Mark scheme – Acids, Bases and Buffers

Questi on			Answer/Indicative content	Mark s	Guidance
1	а		HCOOH + CH ₃ COOH \Rightarrow HCOO ⁻ + CH ₃ COOH ²⁺ √ A1 B2 B1 A2 OR A2 B1 B2 A1 √ CARE: Both + and – charges required for products in equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge	2 (AO 1.2×2)	IGNORE state symbols (even if wrong)IF proton transfer is wrong way aroundALLOW 2nd mark for idea of acid–basepairs, <i>i.e.</i> HCOOH + CH ₃ COOH \rightleftharpoons HCOOH ₂ + +CH ₃ COO ⁻ B2A1A2B1NOTE For the 2nd marking point (acid–basepairs), this is the ONLY acceptable ECF <i>i.e.</i> NO ECF from impossible chemistry
	b	i	$[H^{+}] = 10^{-2.72} \text{ OR } 1.905 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ $[CH_{3}COOH] = \frac{(1.905 \times 10^{-3})^{2}}{1.78 \times 10^{-5}} \checkmark$ $(= 0.204 \text{ mol dm}^{-3})$	2 (AO 2.4×2)	ALLOW 2SF up to calculator value of 1.905460718 x 10 ⁻³ ALLOW use of [HA] Mark is for working.
		ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.4 \times 10^{-2} \pmod{\text{dm}^{-3}}$ award 4 marks 	4 (AO 3.3×3)	ALLOW ECF ALLOW [HA] and [A ⁻] in working ALLOW 1.5 × 10 ⁻² up to calculator value 1 45248 × 10 ⁻² (mol dm ⁻³)
			OR $1.5 \times 10^{-2} \pmod{\text{dm}^{-3}} \checkmark$ Calculation of original [CH ₃ COO ⁻] (in 600 cm ³) [CH ₃ COO ⁻] _{initial} = $\left(\frac{1.45248 \times 10^{-2} \times 1000}{600}\right)$ = $2.4 \times 10^{-2} \pmod{\text{dm}^{-3}} \checkmark$ ALLOW alternative approach based on Henderson–	(AO 3.4×1)	1.45248 × 10 ⁻² (mol dm ⁻³) ALLOW 2.4 × 10 ⁻² up to calculator value 2.4208 × 10 ⁻² (mol dm ⁻³) COMMON ERRORS BUT CHECK WORKING [CH ₃ COO ⁻] _{initial} = 8.7 × 10 ⁻³ 600 and 1000 inverted 3 marks [CH ₃ COO ⁻] _{initial} = 3.6 × 10 ⁻⁶ [CH ₃ COO ⁻] _{initial} = 1.3 × 10 ⁻⁶ [CH ₃ COO ⁻] _{initial} = 1.3 × 10 ⁻⁶ [CH ₃ COOH] : [H ⁺] inverted 2 marks AND 600 and 1000 inverted

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hasselbalch equation (ALLOW $-\log K_a$ for pK_a) e.g.		No volumes used = 3.6×10^{-2} 2 marks
$\frac{1}{2} \begin{bmatrix} C_{H_{2}COO}]_{bdiii} = 1.5 \times 10^{-2} \checkmark \\ [C_{H_{2}COO}]_{bdiii} = 1.5 \times 10^{-2} \circlearrowright \\ [C_{H_{2}COO}]_{bdiii} = 1.5 \times 10^{-2} \odot \\ [C_{H_{2}COO}]$		$pH = pK_a + \log \frac{[CH_3COOH]}{[CH_3COO-]} OR pK_a - \log \frac{[CH_3COO-]}{[CH_3COOH]} OR$		
2 Image: Chick COO * Jourise = 1.5 × 10 ⁻³ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻² ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ ✓ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ Image: Chick COO * Jourise = 2.4 × 10 ⁻⁵ √ I		$4 = 4.75 + \log \frac{8.16 \times 10^{-2}}{[CH_3COO^-]} \mathbf{OR} \ 4.75 - \log \frac{[CH_3COO^-]}{8.16 \times 10^{-2}} \checkmark$		ALLOW –log K_a for p K_a
2 CH:SO2OT]_max = 2.4 × 10 ⁻² √ Examiner's Comments This question required the candidate to calculate the original concentration of ethanoate ions in the buffer Higher-attaining candidates often societ the first two marking points but did not factor for the original solution. Lower-attaining candidates often socred the first two marking points but did not use the buffer equation. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ 8 Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH + H:O == CH:SO2O + H:O ⁻ ✓ ALLOW add-base pairs labelled other way round. Image: CH:SO2OH +		log[CH ₃ COO ⁻] = 4 − 4.75 − 1.09 = −1.84 √		
$\frac{1}{2}$ $\frac{1}$		$[CH_3COO^-]_{buffer} = 1.5 \times 10^{-2} \checkmark$		
$\begin{array}{ c c } \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\$		$[CH_3COO^-]_{initial} = 2.4 \times 10^{-2} \checkmark$		Examiner's Comments
2ALLOW \rightarrow for \neq 2CH3S02OH + H2O \Rightarrow CH3SO2O + H3O * \checkmark 4(AO2.1x2ALLOW acid-base pairs labelled other way round. i.e. CH3SO2OH + H2O \Rightarrow CH3SO2O + H3O *A1B2B1A2A1B2B1A2For an equilibrium shown using CH3COOH instead of H2O, mark acid-base pairs by ECF, i.e.If ONE charge is missing from equilibrium. ALLOW ECF for acid-base pairs markCH3SO2OH + CH4COOH \Rightarrow CH4C				calculate the original concentration of ethanoate ions in the buffer. Higher-attaining students gained full credit. Most students calculated the concentration in the buffer solution but did not factor for the original solution. Lower-attaining candidates often scored the first two marking points but did
2ALLOW acid-base pairs labelled other way round. i.e. CHsSO ₂ OH + H ₂ O \Rightarrow CHsSO ₂ O ⁻ + H ₃ O ⁺ \checkmark A1 B2 B1 A2 \checkmark ALLOW acid-base pairs labelled other way round. i.e. CHsSO ₂ OH + H ₂ O \Rightarrow CHsSO ₂ O ⁻ + H ₃ O ⁺ \land A2 B1 B2 A1 ALLOW small slipFor an equilibrium shown using CHsCOOH instead of H ₂ O, mark acid-base pairs by ECF, i.e.If ONE charge is missing from equilibrium. ALLOW ECF for acid-base pairs markCHsSO ₂ OH + CHsCOOH \Rightarrow CHsSO ₂ O ⁻ + CHsCOOH \Rightarrow CHsSO ₂ O ⁻ + CHsCOOH \Rightarrow CHsSO ₂ O ⁻ + CHsCOOH \Rightarrow CHsCOOH		Total	8	
2 (A) (A) (A) (A) (A) (A) (A) (A)				ALLOW acid-base pairs labelled other way
2A1B2B1A2If ONE charge is missing from equilibrium. ALLOW ECF for acid-base pairs mark2For an equilibrium shown using CH ₃ COOH instead of H ₂ O, mark acid-base pairs by ECF, i.e.IGNORE 'more acidic' Response needs strength/dissociation2CH ₃ SO ₂ OH + CH ₅ COOH \neq CH ₅ COOH ₂ ' \boxtimes A1B2B1A2ECF \checkmark A1B2B1A2ECF \checkmark ALLOW maths explanation for final 2 marks, e.g.ALLOW maths explanation for final 2 marks, e.g.CH ₃ SO ₂ OH dissociates more (than CH ₃ COOH) OR CH ₃ SO ₂ OH is a stronger acid \checkmark (AOStudent is correct AND (sulfonic acid has) lower pK ₀ /higher K _a OR greater [H'](AOORA \checkmark (AO3.2)BOTH pH calcs subsumes 'Student is correct'		CH ₃ SO ₂ OH + H ₂ O \implies CH ₃ SO ₂ O ⁻ + H ₃ O ⁺ ✓	(AO	i.e. $CH_3SO_2OH + H_2O \rightleftharpoons CH_3SO_2O^- + H_3O^+$ A2 B1 B2 A1
2IGNORE more actic Response needs strength/dissociation2 $CH_3SO_2OH + CH_3COOH \Rightarrow CH_3COOH_2^+ \boxtimes A1 = B2 = B1 = A2 = ECF \checkmark$ A1 = B2 = B1 = A2 = ECF \lorALLOW maths explanation for final 2 marks, e.g. 				
2A1B2B1A2ECF \checkmark 2CH ₃ SO ₂ OH dissociates more (than CH ₃ COOH) OR CH ₃ SO ₂ OH is a stronger acid \checkmark ALLOW maths explanation for final 2 marks, e.g. Ka(CH ₃ COOH) = 10 ^{-(4.76)} = 1.74 × 10 ⁻⁵ [H ⁺] = $\sqrt{(1.74 \times 10^{-5}) \times 1}$ = 4.17 × 10 ⁻³ pH = -log 4.17 × 10 ⁻³ = 2.38 \checkmark ORA in terms of CH ₃ COOH being a weaker acid3.1)(AO 3.1)Student is correct AND (sulfonic acid has) lower pK _a /higher K _a OR greater [H ⁺]ALLOW maths explanation for final 2 marks, e.g. Ka(CH ₃ SO ₂ OH) = 10 ^{-(4.76)} = 1.74 × 10 ⁻⁵ [H ⁺] = $\sqrt{(1.74 \times 10^{-5}) \times 1}$ = 4.17 × 10 ⁻³ pH = -log 4.17 × 10 ⁻³ = 2.38 \checkmark AND (sulfonic acid has) lower pK _a /higher K _a OR greater [H ⁺]BOTH pH calcs subsumes 'Student is correct'AND (sulfonic acid has) lower pK _a /higher K _a OR greater [H ⁺](AO 3.2)				
OR CH ₃ SO ₂ OH is solution in the (that CH ₃ COOH)(Har CH ₃ COOH)(Har CH ₃ COOH) = 10 ($(-1.4 \times 10^{-5}) \times 1$) = 4.17 × 10 ⁻³ OR CH ₃ SO ₂ OH is a stronger acid \checkmark (AOORA in terms of CH ₃ COOH being a weaker acid(AOStudent is correct(ANDAND(sulfonic acid has) lower pK _a /higher K _a OR greater [H ⁺]ORA \checkmark (AO(AO(AO(AO) <th></th> <td>A1 B2 B1 A2 ECF ✓</td> <td></td> <td></td>		A1 B2 B1 A2 ECF ✓		
Student is correct AND (sulfonic acid has) lower pK_a /higher K_a OR greater [H ⁺] ORA \checkmark (AO 3.2) $K_a(CH_3SO_2OH) = 10^{-(-1.30)} = 79.4$ $[H^+] = \sqrt{(79.4) \times 1} = 8.91$ $pH = -log 8.91 = -0.95 \checkmark$ BOTH pH calcs subsumes 'Student is correct'	2		(AO	$[H^+] = \sqrt{(1.74 \times 10^{-5}) \times 1)} = 4.17 \times 10^{-3}$
AND (sulfonic acid has) lower pK_a /higher K_a OR greater [H ⁺] BOTH pH calcs subsumes 'Student is correct' ORA \checkmark (AO 3.2) 3.2)		ORA in terms of CH ₃ COOH being a weaker acid	3.1)	[H ⁺] = √(79.4) × 1) = 8.91
3.2)		AND (sulfonic acid has) lower pK_a /higher K_a OR greater [H ⁺]		BOTH pH calcs subsumes 'Student is
Examiner's Comments				
				Examiner's Comments

			Total	4	Most candidates completed a correct equilibrium equation and assigned the correct acid-base pairs. A significant number of candidates used ethanoic acid instead of water in the equation. The examiners allowed error carried forward in this case for the acid-base pairs. Candidates found it much more difficult to explain whether the sulfonic acid had a lower pH value. The higher-attaining candidates answered concisely. They usually identifying that the sulfonic acid would have a lower pH as the pKa value was lower (or the Ka value greater), leading to more dissociation than ethanoic acid. Lower-attaining candidates often produced unfocussed and lengthy responses, sometimes relating increased dissociation in an acid to a higher, rather than a lower, pH. Some candidates approached their explanation mathematically, calculating pH values for ethanoic acid and sulfonic acid from their concentrations and pKa values. If correct, this approach was fully credited.
3	a		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.98 award 2 marks [H ⁺] = √(<i>Ka</i> × [C ₂ H ₅ COOH])= 1.039 × 10 ⁻³ (mol dm ⁻³) √ pH = −log 1.039 × 10 ⁻³ = 2.98 (Must be to 2 DP) √	2 (AO 2.2 ×2)	ALLOW ECF throughoutONLY ALLOW pH mark by ECF if K_a AND 0.080 used and AND pH <7
	b	i	$n(C_2H_5COOH) = (0.0800 \times \frac{25.0}{1000}) = 0.002 \text{ (mol)}$ AND $V(NaOH) = \frac{0.002}{0.100} \times 1000 = (= 20(.0))$	1 (AO 2.5)	ALLOW 0.02 dm ³ if unit given Mark is for WORKING which could all be shown as 1 step ALLOW method showing 20cm ³ NaOH contains the same moles as acid $n(C_2H_5COOH) = 0.08(00) \times 0.025(0) = 0.002$

	cm ³) √		 (mol) and n(NaOH) = 0.02(00) x 0.1 = 0.002(00) (mol) Examiner's Comments Showing by calculation something already known is a skill that some candidates find challenging. Many responses included rows of figures with '20 cm³' appearing at the end. Clarity of working is essential and in questions such as this, candidates are advised to include word descriptions of what they are calculating, even if it is abbreviations such as 'n' for number of moles.
	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 12.55 award 4 marks	<u> </u>	ALLOW ECF throughout For first mark ALLOW (Excess volume of NaOH = 25(.0) cm ³) $n(OH^{-})_{excess} = 0.100 \times \frac{25.0}{1000} = 0.0025 \text{ (mol)}$ Common errors
	<i>Excess mol of NaOH:</i> $n(OH^{-})_{excess} = n(OH^{-}) - n(C_2H_5COOH)$ $= (0.100 \times \frac{45.0}{1000}) - (0.0800 \times \frac{25.0}{1000})$	4	If initial $V(NaOH) = 45 \text{ cm}^3$ $[OH^-] = 0.0643 \text{ (mol)}$ $[H^+] = 1.56 \times 10^{-13} \text{ (mol dm}^{-3})$ pH = 12.81 award three marks (no 1st mark) If $n(OH^-)_{\text{excess}}$ is used in $[H^+]$ calculation $n(OH^-)_{\text{excess}} = 0.0025 \text{ (mol)}$
ii	= $0.0045 - 0.002 = 0.0025 \text{ (mol)} \checkmark$ Concentration of OH: $[OH^{-}] = (\frac{0.0025}{70.0 \times 10^{-3}}) = 0.0357 \text{ (mol dm}^{-3}) \checkmark$ Concentration of H*: $[H^{+}] = (\frac{1.00 \times 10^{-14}}{0.0357}) = 2.8 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$ Conversion to pH: $pH = (-\log 2.8 \times 10^{-13}) = 12.55 \checkmark$	(AO 1.2 ×1) (AO 2.6 ×3)	$[H^{+}] = \frac{1.00 \times 10^{-14}}{0.0025} = 4.(00) \times 10^{-12} \text{ (mol dm}^{-3})$ $pH = 11.40 \text{ award three marks (no 2^{nd} mark)}$ $ALLOW \text{ pOH method for last two marks}$ $pOH = -\log[OH^{-}] = 1.447$ $pH = 14 - 1.447 = 12.55$ $ALLOW \text{ ECF for conversion from [H^{+}] to pH}$ $provided \text{ value calculated is above 7 and}$ $from derived [H^{+}]$ $Examiner's Comments$ This calculation proved difficult with once again, many figures and sums appearing with little indication as to their relevance.

			Responses to 20bi/ii often featured rows of figures and random sums without a single word about what the figures were or sums were set to calculate. Candidates should remember to provide written indications of what it is they're working out – presenting the calculations without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation.
ii i	Shape Slight rise/flat, AND (near) vertical, AND then slight rise/flat ✓ pH Vertical section within the extremes of pH 5 to 12 and a minimum range of three pH units AND middle of vertical section (equivalence point) needs to be above pH 7 ✓ End point Vertical section at ~ 20 cm³ NaOH ✓	3 (AO 2.3 ×1) (AO 2.4 ×2)	 If pH curves wrong way round (i.e. adding acid to alkali), ONLY award mark for End point (~ 20 cm³) Examiner's Comments This weak acid / strong alkali titration curve required candidates to apply their knowledge. Some candidates found it difficult to draw an adequate titration curve. The key points to titration curves are: A 'vertical' section at the end point The vertical section with pH range correct to relative to the strength of acid/alkali A correct equivalence point relative to pH 7 with respect to the strength of acid/alkali A 'shallow curve' leading from 0 cm3 to vertical section A 'shallow curve' leading from the vertical section to the total volume added For this reaction: The vertical section was at 20 cm³ (given in 20bi) As it was a weak acid and strong alkali reacting, the vertical section should start above pH 5 and finish around pH 11 The equivalence point (half-way up the vertical section) for a weak acid / strong alkali titration should be that of the weak acid, C₂H₅COOH (answer to 20(a)) The final pH should be that of the final solution (answer to 20(b)(ii))

	i v	cresol purple AND pH range matches vertical section/rapid pH change OR end point/colour change matches vertical section/rapid pH change √	1 (AO 3.3)	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point/colour change matches equivalence point IGNORE colour change matches end point <i>Colour change is the same as end point</i> <u>Examiner's Comments</u> Some candidates realised that the most suitable indicator for a weak acid / strong alkali titration would be cresol purple. For incorrect responses, other indicators appeared to be selected at random, suggesting that candidates were unclear on the criteria for selected a suitable indicator.
	v	similarity: end point / volume (20 cm ³) of NaOH needed to neutralise OR final pH / shape of curve after end point √ difference: HCN higher starting pH OR HCN shorter vertical section √	2 (AO 3.2 ×2)	End point must not refer to same pH ALLOW different equivalence point IGNORE different starting pH Examiner's Comments When identifying a similarity, many candidates confused the term 'equivalence point' with the term 'end point'. For differences, many candidates realised that HCN had a different K _a to C ₂ H ₅ COOH but often did not appreciate that this would lead to a starting point with a higher pH.
c		HIO ₃ dissociation is not negligible / dissociates to a significant extent OR Large <i>K</i> _a and HIO ₃ is 'stronger' (weak) acid OR [HIO ₃] _{eqm} is significantly lower than [HIO ₃] _{initial/undissociated} √	1 (AO 3.3)	ALLOW use of HA Ignore [HIO ₃] _{equilibrium} < [HIO ₃] _{initial/undissociated} ALLOW [HIO ₃] _{equilibrium} ~ [HIO ₃] _{undissociated} is no longer a valid assumption ALLOW [HIO ₃] _{equilibrium} ~ [HIO ₃] _{undissociated} is no longer a valid assumption ALLOW [HIO ₃] has a larger K _a so the assumption that [HIO ₃] at equilibrium = [HIO ₃] initially so assumption is not valid Examiner's Comments Very few candidates scored the mark for this question. The most common error was to write 'HIO ₃ dissociates'. While correct, this is true of all weak acids. The subtlety in this question was to realise

			that because K_a was relatively high, the resultant acid strength would mean that the degree of dissociating was significant enough so initial [HIO ₃] was significantly less than [HIO ₃] at equilibrium. In other words, the assumption [HIO ₃]initial = [HIO ₃]equilibrium is not valid in this case.
	Total	14	
	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 mark) Detailed explanation of equilibrium, the action of the buffer and correct calculation of [HCO ₃ -] : [H ₂ CO ₃] ratio. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		Indicative scientific points may include: (State symbols not required in equations) Equilibrium and equilibrium shifts • H ₂ CO ₃ (aq) ≓ H ⁺ (aq) + HCO ₃ ⁻ (aq) • Addition of H ⁺ causes ≓ to shift to left • Addition of OH ⁻ causes ≓ to shift to right
	1 ovel 2 (3 - 4 marke)		Action of buffer
4	Level 2 (3–4 marks) Detailed explanation of equilibrium and the action of the buffer. OR Detailed explanation of equilibrium and correct calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. OR Detailed explanation of the action of the buffer and correct calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. OR Partial explanations of equilibrium, and the action of the buffer and attempt calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Detailed explanation of equilibrium. OR Correct calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. OR Detailed explanation of the action of the buffer. OR Partial explanations of equilibrium and the action of the buffer.' OR Partial explanations of equilibrium and attempt at calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. OR Partial explanation of the action of the buffer and attempt at calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6 (AO1. 1 ×2) (AO1. 2 ×2) (AO3. 1 ×1) (AO3. 2 ×1)	• Increase in H ⁺ / addition of acid leads to: H ⁺ (aq) + HCO ₃ ⁻ (aq) \rightarrow H ₂ CO ₃ (aq) OR HCO ₃ ⁻ reacts with added acid • Increase in OH ⁻ / addition of alkali leads to: H ⁺ (aq) + OH ⁻ (aq) \rightarrow H2O(I) OR H ₂ CO ₃ (aq) + OH ⁻ (aq) \rightarrow HCO ₃ (aq) + H ₂ O(I) OR H ₂ CO ₃ reacts with added alkali Calculation of [HCO₃⁻] : [H₂CO₃] ratio • K _a = 10 ^{-6.38} OR 4.17 × 10 ⁻⁷ (mol dm ⁻³) • [H ⁺] = 10 ^{-7.40} OR 3.98 × 10 ⁻⁸ (mol dm ⁻³) [HCO ₃] <u>4.17 × 10⁻⁷</u> [H ₂ CO ₃] OR 3.98 × 10 ⁻⁸ • ratio = 10.47(:1) OR 10.48(:1) ALLOW 10.5 OR 10(:1) (after working shown) ALLOW $\frac{4.2 \times 10^{-7}}{4.0 \times 10^{-8}}$ And ratio = 10.5 OR 11 (after working shown)

0 marks No response or no response worthy of credit.	ALLOW $\frac{[H_2CO_3]}{[HCO_3^-]}$ OR $\frac{3.98 \times 10^-}{4.17 \times 10^{-7}}$
	And ratio = 1 : 0.095
	Examiner's Comments This Level of Response question was generally well answered with many candidates achieving maximum marks by simply considering what was required in the question.
	The calculation of the $[HCO_3^-]$: $[H_2CO_3]$ ratio was well described although sometimes the final expression of the ratio left ambiguity as it was hard to tell whether the ratio given referred to the $[HCO_3^-]$: $[H_2CO_3]$ ratio or the $[H_2CO_3]$: $[HCO_3^-]$ ratio
	The buffer reactions on separate addition of acid (H ⁺ ions) and alkali (OH ⁻ ions) were explained and, better still, shown in equation form.
	The direction of shift on the $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$ equilibrium was invariably correct, but many candidates did not achieve credit for responses such as 'Addition of H ⁺ ions shifts the equilibrium to the left' because they did not give the equilibrium which was undergoing shift.
	An example of a complete answer gaining L3 (6 marks) is given.
	Exemplar 5
	the equilibrium is
	at the top. The first bullet point gives a chemical
	1 5

				equation for the reaction occurring when H ⁺ ions are added as well as the shift in equilibrium. The second bullet point gives a chemical equation for the reaction occurring when OH ⁻ ions are added as well as the shift in equilibrium. The steps in the calculation are clearly shown and the ratio is clear.
		Total	6	
5		Initial rate = $10^{-2} \times 2.4 \times 10^{-3} \text{ s}^{-1}$ = 2.4 × 10 ⁻⁵ (mol dm ⁻³ s ⁻¹) \checkmark	1 AO 2.2	Examiner's CommentsThis part tested an understanding of pH as a logarithmic scale and the relationship between rates and order. This part discriminated extremely well. A pH of 3 meant that the H ⁺ concentration would be 100 times less than at a pH of 1. Being a first order reaction with respect to H ⁺ , the initial rate is simply 100 times less than at a pH of 1: 2.4×10^{-5} mol dm ⁻³ s ⁻¹ .The higher-ability candidates identified the relationships and often wrote the correct answer on the answer line with no visible working (presumably doing the calculation in their head). Others used their well-learnt equations to calculate the same correct answer.Many candidates found the calculation difficult and 7.2×10^{-3} ($3 \times (2.4 \times 10^{-3})$) was a very common incorrect answer. If candidates had fully scrutinised this answer, they may have realised that a more dilute solution cannot produce a faster rate.
		Total	1	
6	а	$CO_3^{2-} + H_2O \rightarrow OH^- + HCO_3^-$ OR $CO_3^{2-} + H_2O \rightarrow 2OH^- + CO_2 \checkmark$	1 AO 1.2	ALLOW $CO_3^{2-} + 2H_2O \rightarrow 2OH^- + H_2CO_3$ IGNORE state symbols ALLOW inclusion of Na ⁺ as spectator ion, e.g. $2Na^+ + CO_3^{2-} + H_2O \rightarrow 2OH^- + 2Na^+ + CO_2$ IGNORE Na ₂ CO ₃ + H ₂ O \rightarrow 2NaOH + CO ₂ <i>lonic equation required</i> IGNORE equation with H ⁺ or H ₃ O ⁺

b	Acid/H*/HCI reacts with OR protonates benzoate / C ₆ H ₅ COO ⁻ carboxylate / salt	1 AO 2.3	e.g. $CO_3^{2-} + H^+ \rightarrow OH^- + CO_2$ <i>Question asks for reaction with H</i> ₂ O Examiner's Comments This equation presented problems for many candidates, despite the question asking for an equation between carbonate ions and water. An acceptable equation had to be ionic and needed to produce OH ⁻ (for the alkaline solution) and either HCO ₃ ⁻ or CO ₂ . Many candidates wrote an equation with H ⁺ instead of H ₂ O, with lower ability candidates showing the carbonate ion with the wrong charge as CO ₃ ⁻ . Many candidates wrote full equations despite the question asking for an ionic equation. Candidates do need to read the instructions in the question. ALLOW suitable equation, e.g. $C_6H_5COO^- + H^+ \rightarrow C_6H_5COOH$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid/H ⁺ /HCI neutralises / reacts with/removes alkali / $OH^- / CO_3^{2-} / Na_2CO_3$ Examiner's Comments Candidates found this part extremely difficult. The question was aimed to stretch and challenge.
	(to form benzoic acid) √		Many candidates followed on directly from part (a), stating in simple terms that the alkaline solution needed to be neutralised to remove hydroxide ions. However, candidates were expected to recognise that the alkaline conditions would lead to benzoate ions rather than benzoic acid being present in the mixture. The mixture is acidified to protonate the benzoate. The hint in the question was about making the benzoic acid appearing when acid is added.
с	C ₆ H ₅ CH ₂ OH + 2[O] → C ₆ H ₅ COOH + H ₂ O \checkmark	1 AO 2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $C_7H_8O + 2[O] \rightarrow C_7H_6O_2 + H_2O$ <u>Examiner's Comments</u> This part discriminated well with many

			candidates being able to write a correct equation using their knowledge of the oxidation of alcohols. Mistakes usually resulted in the balancing with either [O] instead of 2[O] or 2H ₂ O instead of H ₂ O. Written equations always need to be checked for the atoms balancing. ALLOW ECF for each step
	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marks Theoretical moles		Calculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass 1. Theoretical moles = 0.0385 mol 2. Mass = 0.0385 × 122.0 = 4.70 g
	$n(C_{6}H_{5}COOH) \text{ OR } n(C_{6}H_{5}CH_{2}OH)$ $= \frac{4.00 \times 1.04}{108.0} \text{ OR } 0.0385 (mol) \checkmark$	3	3. % yield = $\frac{1.59}{4.70} \times 100 = 33.8\%$
d	Actual moles $n(C_6H_5COOH) = \frac{1.59}{122.0}$ OR 0.013(0) (mol) \checkmark	AO2. 8×1 AO2. 8×1	35.2% → 2 marks • From $\frac{4.00}{108}$ = 0.0370
	% yield = $\frac{0.0130}{0.0385} \times 100$ = 33.8% OR 33.9 (3 sig fig) \checkmark Answer depends on some intermediate roundings to 3SF	AO1. 2	(no use of density) 36.5 OR 36.6% \rightarrow 2 marks • $\frac{4.00/1.04}{108} = \frac{3.846}{108} = 0.0356$
			(÷ density instead of × density) <u>Examiner's Comments</u>
			Candidates are well practised with percentage yield calculations with about half obtaining the correct percentage yield of 33.8 or 33.9% to secure all 3 marks. Many were able to secure partial credit for incorrect answers, provided that the working was laid out clearly.

		Some responses showed a simple percentage of the two masses with no consideration of moles or molar masses. Such a response received no credit.
e Dissolve in the minimum quantity of hot water/solvent 🗸 Cool AND Filter AND (leave to) dry ✓ All three needed	2 AO 3.3 x2	ALLOW any solvent ALLOW any solvent DO NOT ALLOW use of drying agent (e.g. MgSO4) IGNORE Initial filtering hot filtration to remove insoluble impurities Examiner's Comments Many candidates produced thorough responses, showing that they had encountered recrystallisation as a technique in their practical work. Most candidates were aware that the impure product is dissolved in a minimum volume of hot solvent, although 'minimum' was sometimes omitted. The subsequent stages were sometimes incomplete or in the wrong order. Many were aware that the hot solution can be passed through fluted filter paper to remove solid impurities. (This is beyond the specification requirements for A Level but good practice). Most candidates were aware of the need to filter (usually under reduced pressure) but the necessary cooling stage to form the crystals was sometimes omitted. Finally, many responses omitted the need to dry the crystals by adding an anhydrous salt (e.g. CaCl ₂ or MgSO4), a clear confusion

		Total	8	described the purification of an organic liquid for their response, including use of a separating funnel, drying and distillation.
7	i	3-hydroxybutanal √	1	ALLOW 3-hydroxybutan-1-al IGNORE lack of hyphens or addition of commas ALLOW 4-oxobutan-2-ol OR 1-oxobutan-3-ol DO NOT ALLOW • 3-hydroxybutal • 3-hydroxybutal • 3-hydroxybutanal Examiner's Comments Most candidates made good attempts at the name, the difficulty being that hydroxyl group needed to be shown as a hydroxy-prefix, rather than the suffix -ol. Common errors included 2-hydroxybutanal (counting the carbon chain from the wrong end) and 2- or 3-hydroxybutanoic acid (reading the aldehyde group as a carboxylic acid).
	ii	Addition 🗸	1	IGNORE nucleophilic OR electrophilic OR radical DO NOT ALLOW addition–elimination, condensation, polymerisation <u>Examiner's Comments</u> This part was answered well with most choosing nucleophilic addition. Credit was given just for 'addition'. Throughout, IGNORE 'connectivity in any
	ii	 ALLOW any formula provided that number and type of atoms and charge are correct, e.g. For CH₃CHO, ALLOW CH₃COH, C₂H₄O, etc. Step 1: Correct equation √ One correct acid–base pair √ i.e. A1 and B1 OR A2 and B2 	3	formula or structures shown. Examples in Answer column and in 6a(iv) guidance below

	3CHO + OH⁻ ⇒ ⁻ 3CHO + OH⁻ ⇒ 0				B2	A1	A2	B1
A1	B2	B1	A2		OR B1 Step 2:	A2	A1	B2
	B1) + ⁻ CH₂CHO + :HOHCH₂CHO +		A1		-	O + CH₃Cl CH₃CHOH(H₂O⁺: ALL	CH2CHO +	+ OH⁻ √
For ⁻CH₂CH	IO: ALLOW CH	₂CHO⁻; CH₃CO	⁻; C2H3O⁻		<u>Examiner</u>	's Comme	ents	
For CH ₃ CH	OHCH₂CHO, A I	LOW C4H8O2			This novel question linked togeth base equilibria with a multi-step p Many candidates completed an e generate acid–base pairs, which usually assigned correctly. The fil equation was challenging but the ability candidates were able to co together all the information with the responses to arrive at the correct See Exemplar 15. Exemplar 15 CH ₃ CHO + OHT \rightleftharpoons .CH ₃ CO ⁻ +		p process. n equation to ch were then e final the highest o combine h their earlie ect equation	
он сн ₃				1	OR a com unambigue For conne ALLO (Connection (Connection Examiner This part v on the part Candidate information molecules	al formulae bination of ous ctivity, l PH CH ₃ <i>vity not bel</i> <i>vity not bel</i>	e f above as CH ₃ – CH ₃ – ing assess ents the most to link the ining two the produc	s long as C₃H– (sed) challenging earlier ethanal ct for

					candidates were able to come up with the correct structure.
			Total	6	
8	а	i	$\mathcal{K}_{a} = \frac{[H^{+}] [CH_{3}COO^{-}]}{[CH_{3}COOH]} \checkmark$	1	IGNORE state symbols Must be square brackets IGNORE expressions with HA or with [H ⁺] ² Examiner's Comments Almost universally known. Common errors were the use of [HA], [A ⁻] or [H ⁺] ² .
		ï	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 4.76 award 3 marks 	3	ALLOW use of HA and A ⁻ ALLOW 3 SF up to calculator value of: $3.89045145 \times 10^{-3}$ correctly rounded $K_a 1.739725573 \times 10^{-3}$ NOTE: 1.74×10^{-5} is same from unrounded [H ⁺] calculator value and 3 SF [H ⁺] value 2 DP required Examiner's Comments This three-step calculation was successfully completed by almost all candidates. The common errors were to omit giving the final answer to 2 decimal places or to use [H ⁺] rather than [H ⁺] ² in the calculation, leading to a pK _a of 2.35.
		ï	% dissociation = $\frac{[H^+]}{[CH_3COOH]}$ × 100 = $\frac{3.89 \times 10^{-3}}{0.870}$ × 100 = 0.447(%) ✓	1	3 SF required <u>Examiner's Comments</u> This proved a more difficult calculation than expected, but higher ability candidates realised that [H ⁺] (determined from the pH) divided by the given concentration of CH ₃ COOH was required. Answers had to be expressed to three significant figures in order to receive credit.
	b		FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 95.9(%) award 4 marks	2	

 [H⁺] = 10 ^{-pH}	ALLOW ECF throughout
$[\mathbf{H}^{-1}] = 10^{-13.48} = 3.31 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$	IGNORE rounding errors beyond 3 rd SF throughout
	ALLOW 3.3 × 10 ⁻¹⁴ (mol dm ⁻³)
[OH ⁻] from <i>K</i> _w	ALLOW 0.30 ALLOW 0.303 if 3.3 × 10 ⁻¹⁴ used in the fin marking point
$= \frac{1.00 \times 10^{-14}}{3.31 \times 10^{-14}} = 0.302 \text{ (mol dm}^{-3}) \checkmark$	ALLOW pOH method:,
	pOH = 14 - 13.48 = 0.52
<i>Mass of</i> (NaOH) = 0.302 × 100 / 1000 × 40.0 = 1.21 (g) ✓	[OH ⁻] = 10 ^{-0.52} = 0.302 (mol dm ⁻³)
% of NaOH to 3 SF	ALLOW [OH ⁻] × 0.1 × 40
$=\frac{1.21}{1.26} \times 100 = 95.9 (\%) \checkmark$	Rounding [OH [−]] to 0.3(0) gives 1.2/1.26 = 95.2% Award 4 marks Rounding [OH [−]] to 0.303 gives 1.212/1.26 96.2% Award 4 marks
	Examiner's Comments
	To help candidates, on this occasion early rounding was ignored and consequently most candidates scored full marks in this multi-step calculation. However, candidate should be advised not to round in the early stages of calculations such as this, as this introduces rounding errors into the final answer.
	Candidates should be encouraged to indicate what they are attempting to calculate in unstructured calculations such as this.
	The first step was frequently seen as 10^{-1} = 3.31 × 10^{-14} which most examiners could take to be [H ⁺]. However, it is cleare to write [H ⁺] = $10^{-13.48}$ = 3.31 × 10^{-14} mod dm ⁻³ . Even inclusion of units would help some candidates achieve partial credit as this might allow examiners to determine what a candidate is attempting to do.
Total	9
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.753, award 3 marks	3

	(mol dm [CH₃CO0	$(mol dm^{-3}) \checkmark$	R (<u>3.63 × 10[−]</u> 1.75 × 10				ALLO 3.630 NOTE calcul ALLO from [end Exam Most seen	W 3 SF u 780548 × E: Answer ator value W 0.749 CH ₃ COO inner's Co candidate type of ca ctly calcul	e and 3 SI if [H ⁺] has H] for gre	ulator valu ectly rour from unro F [H ⁺] val s been su ater accu with this c and were	nded ounded [H ⁺] ue btracted racy at commonly able to
	04-00	OH + FCH₂C		COOH-+			Take ALLC below CH ₃ C	FCH2 great car ow ECF for this is t	he ONLY CH₂COOI	H₃COOH ng labels ct proton ECF	l₂⁺ transfer as
b	-	OH + PCH2C COO ⁻ √ A1 A2	A2 A1	B1 B2	V	2	A1 OR A2 i.e. lai	B2 B1 bels other	B1 B2	A2 A1	√ECF
	i.e. labe	ls other way	round				For the quite size Candia Candia equilit negat were decide should assign	e able ca straightfo date, ther idates stru orium nee ive ion or unable to e which o d become	eded a positive for the product K_a values K_a values for the two separations of two sep	his quest for the w any pitfal th the ide sitive ion uct side. alues in o starting a ed. Finall	eaker s. a that the and a Others rder to cids y, the

				Only the very able were able to explain that the ratio of concentrations of acid and salt would remain constant and as K_a is constant, [H ⁺] and therefore pH would remain constant.
		Total	12	
1	i	$ \mathcal{K}_{a} = \frac{[H^{\dagger}][C_{4}H_{9}S]}{[C_{4}H_{9}SH]} \checkmark $ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: This part was very well answered. Candidates responded with either near molecular formulae, such as C ₄ H ₉ SH, structural formulae or with skeletal formulae. Some candidates made careless errors such as omitting the negative charge or
				showing $[H^+]^2$ as numerator rather than $[C_4H_9S^-]$ $[H^+]$. ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C4H9SH ALLOW CH3COOH
	ii	$CH_{3}CH_{2}CH_{2}CH_{2}SH + H_{3}C - (-) + H_{2}O + H_{3}C - (-) + H_{2}O + H_{3}C - (-) + H_{2}CH_{2}CH_{2}CH_{3}$ Structure of thioester \checkmark Complete equation \checkmark	2	Thioester functional group must be fully displayed, OR as a skeletal formula but allow SC_4H_9 in thioester Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of esterification to thiols and thioesters. Over half the candidates obtained a correct structure of the thioester. Most of these candidates constructed a balanced equation although some omitted the water product. Common errors included formation of a conventional ester and H ₂ S, and retaining the O atom from the OH in the carboxyl group to form –COOS–. As with 4(b)(i), structural and skeletal formulae were used. Candidates are less likely to omit H atoms if the skeletal formula is used.
	ii i	SH J	1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure

				Examiner's Comment: Just over half the candidates drew the correct structure, displaying a good understanding of interpreting organic nomenclature when drawing a structure. Common errors included omission of the CH ₂ adjacent to the terminal –SH group and placing the branch or double bond in wrong positions. Some candidates spoilt an otherwise good response by showing a structural formula or a mixture of skeletal and structural formulae.
	i v	$ \begin{array}{c} \end{array} \rightarrow & HS \longrightarrow & J \longrightarrow & S \longrightarrow & H_2O \\ \\ Reactants \checkmark $ Products AND balanced equation \checkmark	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of condensation to an entirely new context. One mark was allocated for the reactants and this was usually scored. The second mark for the novel cyclic compound and water was much more difficult, aimed at stretch and challenge. A significant number of candidates interpreted the information to obtain a correct cyclic structure but this mark was the domain of the most able candidates.
		Total	6	
1	i	Complete dissociation would give $[H^+] = 0.2 \pmod{dm^{-3}} \checkmark$ pH from complete dissociation = -log 0.2 = 0.7 OR actual $[H^+] = 10^{-0.96} = 0.11 \pmod{dm^{-3}}$ Stage 1 is complete dissociation AND Stage 2 is partial dissociation \checkmark	3	IGNORE Stage 1 is a strong acid AND Stage 2 is a weak acid.
	ii	Observation: fizzing √ H ⁺ reacts with carbonate AND (Stage 2) equilibrium shifts to the right √	2	ALLOW effervescence/'bubbling'

5.1.3 Acids, Bases and Buffers

		Total	5	
1 2 a	i	$(K_{a} =) \frac{[H^{+}][C_{6}H_{7}O_{6}^{-}]}{[C_{6}H_{8}O_{6}]} \checkmark$ ALL species MUST have square brackets State symbols not required TAKE CARE that 'H' is different on top and bottom of expression	1	ALLOW [H ₃ O ⁺] for [H ⁺] IGNORE state symbols, even if wrong $\frac{[H^+]^2}{[C_6H_8O_6]} \text{ OR } \frac{[H^+]^2[A^-]}{[HA]}$
	ii	$pK_a = -\log K_a = -\log (6.76 \times 10^{-5}) = 4.17 √$	1	Answer required to two DP
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.82 award 4 marks $n(vitamin C) = \frac{3 \times 0.500}{176}$ = 8.52(2) × 10 ⁻³ (mol) \checkmark [vitamin C] = 8.52 × 10 ⁻³ × $\frac{1000}{250}$ = 0.0341 (mol dm ⁻³) \checkmark [H*] = $\sqrt{(K_a \times [C_6H_8O_6]) OR}$ $\sqrt{(6.76 \times 10^{-5} \times 0.0341) OR}$ 1.52 × 10 ⁻³ mol dm ⁻³ \checkmark pH = $-\log(1.52 \times 10^{-3}) = 2.82 \checkmark$ Answer required to two DP	4	ALLOW ECF from incorrect <i>n</i> (vitamin C) ALLOW ECF from incorrect [vitamin C] must be derived from $\sqrt{(K_a \times [C_6H_8O_6])}$ ALLOW ECF from incorrect [H ⁺] but ONLY if derived from $\sqrt{(K_a \times [C_6H_8O_6])}$
b	i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF ratio = 0.708 award 3 marks $[H^+] = 10^{-pH} = 10^{-4.02} = 9.55 \times 10^{-5} \text{ (mol dm}^{-3}) \checkmark$ $\frac{[C_6H_7O_6^-]}{[C_8H_8O_8]} = \frac{K_8}{[H^+]^2} = \frac{6.76 \times 10^{-5}}{9.55 \times 10^{-5}} \checkmark$ $\frac{0.708}{1} = \frac{1}{1} \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATIONS MUST BE USED ALLOW ALTERNATIVE using Henderson-Hasselbalch equation ALLOW 9.55 × 10 ⁻⁵ up to calculator value of 9.54992586 × 10 ⁻⁵ correctly rounded ALLOW ECF from incorrect [H ⁺] ALLOW 0.71 (2 SF) up to calculator value correctly rounded

		mass of C6H ₇ O ₆ Na = $0.708 \times \frac{300}{176} \times 198.0$		
	ii		1	ALLOW ECF from answer to (i)
		= 239 OR 240 (mg) √		
		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.0524 \pmod{\text{dm}^{-3}}$ award 2 marks [H ⁺ (aq)] = $10^{-\text{pH}} = 10^{-12.72}$		ALLOW alternative approach via pOH pOH = 14 - 12.72 = 1.28 √ [NaOH] / [OH ⁻ (aq)] = 10 ^{-pOH} = 0.0524 (mol dm ⁻³) √
c	C	$= 1.91/1.9 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$	2	
		[NaOH] / [OH ⁻ (aq)] = $\frac{K_w}{[H^+(aq)]}$ = $\frac{1.0 \times 10^{-14}}{1.91 \times 10^{-13}}$ = 0.0524 (mol dm ⁻³) √		ALLOW any value between 0.052 and 0.053 answer depends on degree of rounding for H ⁺ but 2 SF minimum calculator: 0.052480746
		Total	12	
1 a	a	$(\mathcal{K}_{a} =) \frac{[H^{+}] [NO_{2}^{-}]}{[HNO_{2}]} \checkmark$ IGNORE state symbols	1	IGNORE $\frac{[H^+]^2}{[HNO_2]}$ OR $\frac{[H^+][A^-]}{[A]}$ ALLOW H ₃ O ⁺ for H ⁺ Square brackets required Examiner's Comments Almost all candidates successfully wrote the expression for K_a . Responses using $[H^+(aq)]^2$ were not credited. Rarely, the expression was shown inverted or square brackets were omitted from one or more of the terms. For most candidates, this was an easy mark.
Ł	b	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.12 award 2 marks $[H^+] = \sqrt{K_a \Box [HNO_2]} = 7.502 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 7.502 \times 10^{-3} = 2.12 \checkmark$ $pH \text{ to 2 DP}$	2	ALLOW intermediate value from 3 SF (7.50 up to calculator value of 7.501999733 × 10^{-3} ALLOW 1 mark for 2.1 OR answer > 2 DP (i.e. not 2 DP) ONLY ALLOW pH mark by ECF if K_a AND 0.120 used and AND pH < 7

			pH = −log 5.628 × 10 ⁻⁵ = 4.25 ✓ pH = 0.92 no K _a used: zero marks pH = −log 0.120 = 0.92 pH = 13.08 K _w / pOH used: zero marks pH = −log $\frac{1.00 \times 10^{-4}}{0.120}$ OR 14 − log 0.120 = 13.08 Examiner's Comments Most candidates calculated [H ⁺] as the square root of K _a × [HNO ₂], and then the correct pH value. The commonest errors were incorrect rounding of the pH value (e.g. 2.13) and missing out the square root (giving 4.25). Answer: pH = 2.12
c i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.43, AWARD 4 marks Expression: $K_a \times acid / base ratio$ Use of $K_a \times \frac{[HNO_2]}{[NO_2]}$ OR $4.69 \times 10^{-4} \times \frac{[HNO_2]}{[NO_2]} \checkmark$ Using correct concs / mol in expression $[H^+] = 4.69 \times 10^{-4} \times \frac{0.0400}{0.0500} \checkmark$ Subsumes previous mark Calculation of $[H^+]$ $[H^+] = 3.752 \times 10^{-4} \pmod{m^{-3}} \checkmark$ pH to 2 DP (From 3.42573717) pH = -log 3.752 $\times 10^{-4} = 3.43 \checkmark$ NO marks are available using K_a square root approach (weak acid pH) $K_w/10^{-14}$ approach (strong base pH) ALLOW alternative approach based on Henderson- Hasselbalch equation (ALLOW -logK _a for pK _a) pH = pK _a + log $\frac{(NO_2)}{(HNO_2)}$ OR pK _a - log $\frac{(HNO_2)}{(NO_2)} \checkmark$ pH = pK _a + log $\frac{0.0500}{0.0400}$ OR pK _a - log $\frac{0.0400}{0.0500} \checkmark$ pH = pK _a + log $\frac{0.0500}{0.0400}$ OR pK _a - log $\frac{0.0400}{0.0500} \checkmark$ pH = 3.329 + 0.097 = 3.43 \checkmark	4	FULL ANNOTATIONS MUST BE USEDALLOW just $K_a \times \frac{acid}{salt}$ expressionMark by ECF from $4.69 \times 10^{-4} \times \frac{[NO_2]}{[HNO_2]}$ moreted expressionMark by ECF from incorrect [HNO_2] and[NO_2 ⁻]ONLY award marks for a pH calculation via K_a AND using concentrations / mol derivedfrom the questionDO NOT ALLOW final pH mark by ECF ifpH > 7COMMON ERRORS BUT CHECKWORKINGpH = 2.823 marksinitial concs: 0.200 and 0.0625pH = 3.23marksinitial concs: 0.200 and 0.0625pH = 3.832 marksinitial concs: 0.200 and 0.0625pH = 3.832 marksinitial concs: 0.200 and 0.0625pH = 3.832 marksinitial concs: 0.200 and 0.0625 and ratioinvertedpH = 2.733 marksincorrect [NO2-] = 0.01 and correct [HNO2] =

			 0.04 pH = 4.03 3 marks correct [NO₂⁻] = 0.05 and incorrect [HNO₂] = 0.01 Examiner's Comments This buffer calculation was easier than some on recent papers as the equilibrium moles had been provided. Some candidates tried to mimic the approach for a more complex calculation, introducing errors where there were none. The simpler problem allowed more candidates to obtain the correct value for the pH of the buffer solution than in recent
			examinations. Answer: $pH = 3.43$ <i>FULL ANNOTATIONS MUST BE USED</i> IGNORE $HA \Rightarrow H^+ + A^-$ Equilibrium sign essential
	Equilibrium: 1 mark HNO ₂ ≓ H ⁺ + NO ₂ ⁻ ✓ (ignore state symbols)		 BUT ALLOW small slips in its appearance if it is obviously an attempt to show an equilibrium sign rather than an arrow QWC: Quality of written communication DO NOT ALLOW HA and A⁻ for HNO₂ and NO₂⁻
	Control of pH: 2 marks (QWC) <i>Added HCI</i> NO₂ [−] reacts with added acid / HCI / H ⁺		IGNORE just acid reacts with added alkali IGNORE just conjugate base / salt / base
ii	OR NO ₂ ⁻ + H ⁺ \rightarrow OR more HNO ₂ forms \checkmark Added NaOH HNO ₂ reacts with added alkali / NaOH / OH ⁻ OR HNO ₂ + OH ⁻ \rightarrow OR more NO ₂ ⁻ forms	4	reacts with added acid DO NOT ALLOW salt / base reacts with added acid
	OR H ⁺ reacts with added alkali / NaOH OR H ⁺ + OH ⁻ $\rightarrow \checkmark$ Equilibrium shift:		AWARD 'shift mark' ONLY if correct equilibrium equation has been given IGNORE any other equilibria in response
	 Equilibrium snnt: 1 mark for shifts in HNO₂ ⇒ H⁺ + NO₂⁻ (See 1st mark) Equilibrium for added acid → left AND Equilibrium for added alkali → right √ (QWC) 		Examiner's Comments The role of buffers in controlling pH is a common question and most candidates had prepared their rehearsed answers. Consequently these candidates could obtain the four marks easily. As always, candidates who had not learnt the work produced

				muddled responses that made little sense and could not be credited.
d	łi	Endothermic AND <i>K</i> _w increases with temperature OR Endothermic AND dissociation increases with temperature OR Endothermic AND (dissociation) involves breaking bonds ✓	1	Endothermic and reason required for the mark ALLOW Endothermic AND increasing temperature shifts equilibrium / reaction to the right / favours forward reaction DO NOT ALLOW breaking hydrogen bonds OR intermolecular bonds / forces Examiner's Comments Candidates were expected to predict the type of energy change using the provided information. Credit was given for responses linking an endothermic change with the increase of <i>K</i> _w with temperature or breaking bonds during dissociation.
	ii	<i>OH⁻ concentration</i> $[OH^{-}] = \frac{9.311 \times 10^{-14}}{1.00 \times 10^{-7}} = 9.311 \times 10^{-7} \pmod{dm^{-3}} \checkmark$ <i>Explanation (dependent on 1st mark)</i> $9.311 \times 10^{-7} > 1.(00) \times 10^{-7} \text{ OR } [OH^{-}] > [H^{+}] \text{ OR } OH^{-} \text{ in excess}$ <i>AND</i> Alkaline ✓	2	<i>H</i> ⁺ OR OH ⁻ concentration (neutral pH) [H ⁺] = [OH ⁻] = √(9.311 × 10 ⁻¹⁴) = 3.05 × 10 ⁻⁷ (mol dm ⁻³) ✓ <i>Explanation (dependent on 1st mark)</i> pH = -log (3.05 × 10 ⁻⁷) = 6.5 → 6.515501837 (calc) <i>AND</i> Alkaline ✓ <i>Examiner's Comments</i> Most candidates calculated a value for [H ⁺] using the <i>K</i> _w value at 60°C. Many recognised that [OH ⁻] > [H ⁺] giving an alkaline solution. An alternative and equally valid method seen was to calculate the pH of a neutral solution at 60°C as 6.52 and then to relate water at a pH of 7 as being alkaline. Many using this approach thought that water would be acidic rather than alkaline, presumable because 6.52 < 7.00.
	ii i	p <i>K</i> _w = 13.03 √	1	ONLY correct answer Examiner's Comments Despite the novel context, almost all candidates obtained the correct p <i>K</i> _w value of 13.03.
	i v	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 10.76, award 3 marks	3	FULL ANNOTATIONS MUST BE USED

		Dilution 1 mark		ALLOW dilution AFTER calculation of [H ⁺ (aq)]
		[OH⁻(aq)] = [NaOH(aq)] = $\frac{0.0270}{5}$ = 0.00540 (mol dm ⁻³) ✓		i.e. original [H ⁺] = $\frac{9.311 \times 10^{-14}}{0.0270}$ = 3.45 × 10 ⁻¹² (m
		$[H^{*}] 1 mark [H^{*}] 1 mark [H^{*}] 2 mark [H^{*}] 1 mark pH = -log 1.72 \times 10^{-11} = 10.76 \checkmark Calculator: 1.724259259 \times 10^{-11} pH 1 mark pH = -log 1.72 \times 10^{-11} = 10.76 \checkmark ALLOW pOH method for 2nd and 3rd mark: pOH = -log 0.00540 = 2.27 \checkmark (calculator 2.26760624) pH = 13.03 - 2.27 = 10.76 \checkmark PH = 13.03 - 2.27 = 10.76 \checkmark$		After dilution, [H ⁺] = $3.45 \times 10^{-12} \times 5 = 1.72 \times 10^{-11}$ (mol dm ⁻³) √ pH = -log $1.72 \times 10^{-11} = 10.76$ √ ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH > 7 COMMON ERRORS (MUST be to 2 DP) pH = 11.73 At 25°C (1.00×10^{-14}): 2 marks pH = -log $1.85 \times 10^{-12} = 11.73$ pH = 11.46 No dilution at 60°C (9.311×10^{-14}) 2 marks pH = -log(3.45×10^{-12}) = 11.46 pH = 12.43 No dilution AND 25°C (1.00×10^{-14}) 1 mark pH = -log(3.70×10^{-13}) = 12.43 pH = 12.16 × 5 instead of ÷ 5 at 60°C (9.311×10^{-14}) 2 marks pH = -log(6.879×10^{-13}) = 12.16 pH = 13.13 × 5 instead of ÷ 5 at 25°C (1.00×10^{-14}) 1 mark pH = -log(7.407×10^{-14}) = 13.13 NOTE: Attempts at dilution → 0.0270 with error in powers of $10 \rightarrow 12.46$ from 0.00270, etc may give 2 marks by ECF Examiner's Comments The majority of candidates correctly calculated the pH via K _w but many had problems in initially deriving the concentration of the diluted solution of NaOH. Some candidates did not consider the dilution at all; others produced long calculations of this simple dilution, obtaining an array of concentrations. Provided that this concentration was then converted to a
				pH by a correct method, credit could still be given for the second part of the problem. Answer: pH = 10.76
		Total	18	
1 4	i	$\begin{array}{ccc} - & H_2O & \rightleftharpoons & HCN & OH^-\\ AND Base_{4}2 & Acid 1 & Acid 2_{4} & Base 1 ✓\\ CN \end{array}$	1	State symbols NOT required ALLOW CNH and HO ⁻ (i.e. any order) ALLOW 1 and 2 labels the other way

					around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are. Examiner's Comments The majority of candidates were able to complete the equation for acid–base equilibrium and to identify the acid–base pairs. Candidates are advised to use numbers to label the acid–base pairs, such as 'acid 1' and 'base 1'. Attempts at using 'acid' and 'conjugate base' are ambiguous when more than one acid–base pair is involved. Although credited, it was strange to see hydrogen cyanide often written as CNH.
		ii	H ⁺ reacts with CN ⁻ OR HCN forms OR equation: H ⁺ + CN ⁻ → HCN (ALLOW \rightleftharpoons) OR CN ⁻ accepts a proton / H ⁺ OR equilibrium shifts right AND CN ⁻ is removed ✓	1	ALLOW Acid reacts with / removes OH ⁻ ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments Examiner's Comments The majority of candidates recognised that acid conditions would lead to protonation of CN ⁻ forming toxic HCN.
			Total	2	
1 5	а		Proton / H⁺ donor AND Partially dissociates / ionises ✓	1	Examiner's Comments For most candidates, this was an easy mark, although some only responded for a weak acid (partial dissociation) or for a Brønsted–Lowry acid (proton donor).
	b		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks 		For pOH method:, ALLOW pOH = −log[OH ⁻] = 0.3(0) ✓ (calculator 0.301029995)
			pH = −log 2(.00) × 10 ⁻¹⁴ = 13.7(0) √	2	ALLOW pH = $14 - 0.3 = 13.7 \checkmark$ ALLOW 13.7 up to calculator value of 13.69897 correctly rounded.

			ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH > 7 Examiner's Comments The majority of candidates correctly calculated the pH via <i>K</i> _w . Another less popular but successful approach was via pOH. Either approach could result in both marks. Weaker candidates sometimes calculated the pH as 0.30 (from -log 0.500). This gained no credit. Answer: pH = 13.70
c i	$(K_{a} =) \frac{[H^{*}] [C_{2}H_{5}COO^{-}]}{[C_{2}H_{5}COOH]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]}$ OR $\frac{[H^+][A^-]}{[HA]}$ ALLOW [H ₃ O ⁺] for [H ⁺] IGNORE state symbols Examiner's Comments Almost all candidates successfully wrote the expression for K_a . Responses using [H ⁺ (aq)] ² were not credited. Rarely, the expression was shown inverted or square brackets were omitted from one or more of the terms. Candidates are recommended to carefully check the formulae as this easy mark was sometimes not awarded for a missing C atom within a formula (even in the scripts of able candidates).
ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.9(0), award 3 marks 		ALLOW HA for C ₂ H ₅ COOH and A ⁻ for C ₂ H ₅ COO ⁻ ALLOW ECF from incorrectly calculated [C ₂ H ₅ COOH] ALLOW 1.27 × 10 ⁻³ to calculator value of 1.272792206 × 10 ⁻³ correctly rounded ALLOW 2.9(0) × 10 ⁻³ to calculator value of 2.895242493 correctly rounded
ii	NOTE : The final two marks are ONLY available from attempted use of K_a AND [C ₂ H ₅ COOH]	3	ALLOW use of quadratic equation which gives same answer of 2.90 from 0.120 mol dm ⁻³

				1	
					COMMON ERRORS (MUST be to AT
					LEAST 2 DP unless 2 nd decimal place is
					-
					0)
					pH = 2.59 2 marks
					$-\log\sqrt{(1.35 \times 10^{-5} \times 0.480)}$ Original conc
					pH = 5.79 2 marks
					$-\log(1.35 \times 10^{-5} \times 0.120)$ No $$
					pH = 5.19 1 mark
					−log (1.35 × 10 ⁻⁵ × 0.480) <i>Original conc,</i>
					no $$
					pH = 4.87 0 marks
					-
					$-\log(1.35 \times 10^{-5}) = 4.87 -\log K_a$
					Examiner's Comments
					This part discriminated extremely well. The
					added stage of an initial dilution to a stock
					weak acid pH calculation created problems
					for many candidates. Although most were
					able to use the correct square root
					expression to obtain a value for [H⁺(aq)], the
					concentration used was often incorrect.
					Although just a four times dilution from
					0.480 mol dm ⁻³ to 0.120 mol dm ⁻³ , many
					candidates obtained 0.120 using learnt
					equations rather than the simple ratio.
					Others used the original concentration of
					0.480 mol dm ⁻³ or incorrectly calculated
					concentrations, commonly seen as 0.0480,
					0.0120 or even 0.192 (from × 4). Some
					candidates calculated [H⁺(aq)] using 0.480
					mol dm ^{-3} but then divided by 4 before
					calculating the pH. Able candidates
					invariably obtained the correct pH but many
					obtained pH values from the values above r_{1}
					such as a pH of 2.59 (from 0.480 mol dm ^{-3}),
					for which partial credit could be awarded.
					Answer: pH = 2.90
					ONLY correct answer
					DO NOT ALLOW 4.9 (Question asks for 2
					DP)
	ہ	;	pH = −log 1.35 × 10 ⁻⁵ = 4.87 √	1	Examiner's Comments
	d	'	pri – lug 1.35 × 10 ° – 4.67 v	1	
					Some candidates correctly calculated the
					pH here as −log Ka but most used the
					standard buffer pH method, using a 1:1
					acid–base ratio. Weak candidates often first
1	1	1			aciu-base ratio. Weak canuidates often IIIst

		took the square root of the Ka value, obtaining a pH of 2.43. Unfortunately, some candidates rounded a correct pH to 4.9, despite a two decimal place requirement being emphasised in the question. Answer: pH = 4.87
ï	Added ammonia $C_2H_5COOH removes added NH_3 / alkali / base$ OR $C_2H_5COOH + NH_3 / OH^- \rightarrow$ OR NH_3 / alkali reacts with / accepts H ⁺ OR H ⁺ + NH_3 \rightarrow OR H ⁺ + OH ⁻ $\rightarrow \checkmark$	ALLOW use of HA / weak acid / acid for C ₂ H ₅ COOH; ALLOW use of NH ₄ OH for NH ₃ ALLOW A ⁻ for C ₂ H ₅ COO ⁻ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria
ü	Equilibrium $\rightarrow C_2H_5COO^-$ OR Equilibrium \rightarrow right \checkmark	Examiner's Comments2The role of buffers in controlling pH is a common recall question and most candidates had prepared their rehearsed answers. Although this question asked for the addition of ammonia as a specific base, all but the weakest candidates identified that this was a question about addition of a base. The commonest and best answers stated that NH3 accepts a proton to form NH4+ (with many ionic equations seen). The correct equilibrium shift was usually included.
ii	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES ALLOW HA and A ⁻ throughout Amount of Mg (1 mark) $n(Mg) = \frac{6.075}{24.3} = 0.25(0) \text{ mol } \checkmark$ Moles / concentrations (2 marks) $n(C_2H_5COOH) = 1.00 - (2 \times 0.25) = 0.50 \text{ (mol) } \checkmark$ $n(C_2H_5COO^-) = 1.00 + (2 \times 0.25) = 1.50 \text{ (mol) } \checkmark$ [H ⁺] and pH (1 mark) [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ OR $4.5 \times 10^{-6} \text{ (mol dm}^{-3})$ pH = $-\log 4.5 \times 10^{-6} = 5.35$ 2 dp required \checkmark	4 FULL ANNOTATIONS MUST BE USED For n(Mg), 1 mark ALLOW ECF for ALL marks below from incorrect n(Mg) ECF ONLY available from concentrations that have • subtracted 0.50 OR 0.25 from 1 for [C2H5COOH] • added 0.50 OR 0.25 to 1 for [C2H5COO ⁻] <i>i.e.</i> For moles / concentration 1 mark (1 mark lost)

NOTE: IF there is no prior working, ALLOW 4 MARKS for $[H^+] = 1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND pH = 5.35 IF the ONLY response is pH = 5.35, award 1 mark ONLY Award a maximum of 1 mark (for $n(Mg) = 0.25$ mol) for: pH value from K_a square root approach (weak acid pH) pH value from $K_w / 10^{-14}$ approach (strong base pH)		1. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.25$ 2. $n(C_2H_5COOH) = 0.50$ AND $n(C_2H_5COO^-) = 1.25$ 3. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.50$
ALLOW alternative approach based on Henderson-Hasselbalch equation for final 1 mark $pH = pK_a + \log \frac{1.5}{0.5} \text{ OR } pK_a - \log \frac{0.5}{1.5} \qquad pH = 4.87 + 0.48 = 5.35 \checkmark$ ALLOW _log K _a for pK _a		ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.75}{1.25}$ pH = -log 8 2. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.50}{1.25}$ pH = -log 5 3. $[H^{+}] = 1.35 \times 10^{-5} \times \frac{0.75}{1.50}$ pH = -log 6
		Examiner's Comments This buffer calculation was aimed as stretch and challenge and the majority of candidates struggled to derive the concentrations of CH_3CH_2COOH and $CH_3CH_2COO^-$. An easy mark for the amoun of magnesium added was available for almost all candidates. The problem was then to derive the amount and concentration of CH_3CH_2COOH that would be obtained 0.500 mol ⁻³ . Many did not identify that Mg and CH_3CH_2COOH react in a 1:2 molar ratio, subtracting 0.25, instead of 0.50, from the original concentration. Rarely did
		candidates realise that the CH ₃ CH ₂ COO ⁻ concentration would increase from the initial concentration of 1 mol dm ⁻³ . Others assumed that no CH ₃ CH ₂ COO ⁻ was prese at the start. Consequently, candidates often used a variety of acid–base ratios in their buffer calculation. Instead of the correct ratio of 0.5/1.5, it was very common to see 0.75/1.25, 0.75/0.25, and especially 0.5/1, 0.75/1 and 0.25/1.0. The very best candidates tackled the problem with apparent ease but this was
		seen comparatively rarely in scripts of othe candidates. Answer: pH = 5.35
Total	14	
a $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-\checkmark$ Acid 1 Base 2 Acid 2 Base 1 \checkmark	2	IGNORE state symbols (even if incorrect)

		Base 2Acid 1Acid 2Base 1 ✓NOTE For the 2nd marking point (acid— base pairs), this is the ONLY acceptable ECF <i>i.e., NO ECF from impossible chemistry</i> Examiner's CommentsMost candidates showed an acid-base equilibrium involving proton transfer and then identified the acid-base pairs. The acid base pairs were usually correctly identified but the proton transfer was sometimes shown the wrong way round. Common errors included omission of a positive charge on H ₃ O ⁺ and an equilibrium involving OH ⁻ ions rather than water. Neither approach could be credited.
b i	OR 2H ₂ O ⇒ H ₃ O ⁺ + OH ⁻ ✓	ALLOW $K_w = [H^+] [OH^-]$ OR $[H^+] [OH^-] = 10^{-14} (mol^2 dm^{-6})$ IGNORE breaking for dissociationIGNORE breaking for dissociationIGNORE water contains H^+ and OH^- IGNORE $H_2O \rightarrow H^+ + OH^-$ <i>i.e. no</i> equilibrium sign
ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.15×10^{-11} , award 2 marks	 IF there is an alternative answer, check to see if there is any ECF credit possible using working below.

		$[H^{+}] = 10^{-3.06} = 8.71 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$ $[OH^{-}] = \frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}} = 1.15 \times 10^{-11} \text{ (mol dm}^{-3}) \checkmark$ $\textbf{ALLOW} \text{ answer to two or more significant figures}$ $2SF: 1.1 \times 10^{-11}; 4SF: 1.148 \times 10^{-11};$ $\text{calculator } 1.148153621 \times 10^{-11}$		ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH: pOH = $14 - 3.06 = 10.94 \checkmark$ [OH ⁻] = $10^{-10.94} = 1.15 \times 10^{-11}$ (mol dm ⁻³) \checkmark Examiner's Comments The majority of candidates correctly calculated the hydroxide ion concentration via K _w . Another less popular but successful approach was via pOH. Either approach could result in both marks. Weaker candidates were successful in calculating the hydrogen ion concentration but this was then often shown also as the hydroxide ion concentration in the final answer. Answer: 1.15×10^{-11} mol dm ⁻³
c	i	2CH ₃ COOH + CaCO ₃ → (CH ₃ COO) ₂ Ca + CO ₂ + H ₂ O ✓	1	IGNORE state symbols ALLOW \rightleftharpoons provided that reactants on LHS For CO ₂ + H ₂ O, ALLOW H ₂ CO ₃ ALLOW Ca(CH ₃ COO) ₂ ALLOW (CH ₃ COO ⁻) ₂ Ca ²⁺ BUT DO NOT ALLOW if either charge is missing or incorrect Examiner's Comments The equations seen were certainly better than in previous sessions, perhaps as candidates will have practised similar questions from past papers. Ionic signs within the formula of calcium ethanoate were allowed but both were then needed. Common errors included an incorrect formula of calcium ethanoate with one ethanoate group only and an unbalanced ethanoic acid on the left-hand side of the equation.
	ï	solution contains CH₃COOH AND CH₃COO ⁻ ✓	1	ALLOW names: ethanoic acid for CH ₃ COOH ethanoate for CH ₃ COO ⁻ ALLOW calcium ethanoate OR (CH ₃ COO) ₂ Ca for CH ₃ COO ⁻ IGNORE 'acid, salt, conjugate base; responses must identify the acid and

			conjugate base as ethanoic acid and ethanoate
			IGNORE ethanoic acid is in excess <i>(in question)</i> BUT DO ALLOW some ethanoic acid is left over / present / some ethanoic acid has reacted
			IGNORE equilibrium: CH₃COOH ⇒ H ⁺ + CH₃COO ⁻ <i>Dissociation of ethanoic acid only</i> Examiner's Comments
			The mark scheme was specific in wanting the names or formulae of the components of the buffer solution and also the idea that some ethanoic acid remains. More general responses in terms of an acid and its conjugate base were not credited.
	Quality of written communication, QWC 2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition		FULL ANNOTATIONS MUST BE USED
	of H ⁺ and OH [−] (see below) CH ₃ COOH ⇔ H ⁺ + CH ₃ COO [−] ✓		DO NOT ALLOW more than one equilibrium equation. ALLOW response in terms of H ⁺ , A ⁻ and HA
			IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
i	CH ₃ COOH reacts with added alkali OR CH ₃ COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓	5	ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
	Equilibrium \rightarrow right OR Equilibrium \rightarrow CH ₃ COO ⁻ \checkmark (QWC)		
	CH ₃ COO ⁻ reacts with added acid \checkmark Equilibrium → left OR Equilibrium → CH ₃ COOH \checkmark (QWC)		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt / base reacts with added acid
			Examiner's Comments
			The role of buffers in controlling pH is a common recall question and most candidates had prepared their rehearsed

			answers. Well-prepared candidates were thus able to collect full or nearly full marks for this part. There was a significant minority of candidates who had obviously not learnt this part of the specification and, despite their best efforts to invent answers, there was rarely anything that the examiners could credit. This was a great pity because marks were effectively being thrown away. Candidates are recommended to construct their responses using the weak acid equilibrium equation only. Some candidates shown both the correct relevant equilibrium but also others, including for calcium ethanoate. Subsequent explanations in terms of equilibrium were then ambiguous as the examiner could not tell which equilibrium was being discussed. Some candidates thankfully did label and reference multiple equilibria so that some credit could be awarded.
			FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible.
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 11.48 OR 11.5 (g), award 5 marks 		Incorrect use of $[H^+] = \sqrt{(CH_3COOH)} \times K_a$) scores zero BUT IGNORE if an alternative successful method is present
			Incorrect use of K_w , 1 max for [H ⁺] = 10 ⁻⁵ (mol dm ⁻³) BUT IGNORE if an alternative successful method is present
d	$[CH_{3}COO^{-}] = \frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.200 = 0.350 \text{ mol } dm^{-3} \checkmark$ $n(CH_{3}COONa / CH_{3}COO^{-}) \text{ in } 400$ $cm^{3} = 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \checkmark$	5	ALLOW <i>n</i> (CH ₃ COONa / CH ₃ COO ⁻) = $\frac{1.75 \times 10^{-5}}{10^{-5}}$ ✓ × 0.08 = 0.14(0) (mol) √√
	 mass CH₃COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) √		Note: There is no mark just for $n(CH_3COOH)$ in 400 cm ³ = 0.200 × $\frac{400}{1000}$ = 0.08 (mol) As alternative for the 4th and 5th marks,
	For ECF , <i>n</i> (CH ₃ COONa/CH ₃ COO ⁻) must have been calculated in step before		ALLOW: mass of CH ₃ COONa in 1 dm ³ = 0.350 × 82.0 = 28.7 g \checkmark mass of CH ₃ COONa in 400 cm ³ = 28.7 × $\frac{400}{1000}$ = 11.48 g \checkmark

..... COMMON ECF 4.592 OR 4.6 g AWARD 4 marks use of 400 / 1000 twice ALLOW variants of Henderson-Hasselbalch equation. $pK_a = -\log(1.75 \times 10^{-5}) = 4.757 \checkmark Calc:$ 4.75696..... [CH₃COO⁻] $\log [CH_{3}COOH] = pH - pK_{a} = 5 - 4.757$ = 0.243 $[CH_3COO^-]$ [CH₃COOH]= 10^{0.243} = 1.75 √ [CH₃COO⁻] = 1.75 × 0.200 = 0.350 mol dm⁻³ 1 *n*(**CH**₃**COONa/CH**₃**COO**[−]) in 400 cm³ 400 = 0.350 × 1000= 0.14(0) (mol) ✓ mass CH₃COONa = 0.140 × 82.0 = 11.48 **OR** 11.5 (g) **√ Examiner's Comments** Able candidates answered this question with comparative ease, collecting all five marks for a carefully constructed answer. This was in contrast to weaker candidate who struggled, often resorting to the 'square root' method for calculating the pH of a weak acid. The calculation started off with an easy mark for calculating the hydrogen ion concentration from the pH. Unfortunately, this 'square root' method then resulted in another hydrogen ion concentration which contradicted the original. Other weak candidates resorted to use of K_{w} . The result was that weaker candidates would often score no marks at all for this part. Many candidates were aware of the importance of the acid/base ratio in buffer calculations and were able to gain at least some marks for this part. The commonest error in partially successful responses was with the scaling factor of 400/1000, being either omitted to give an answer of 28.7 g, or used twice to give an answer of 4.952 g

Answer: 11.48 g

5.1.3 Acids, Bases and Buffers

			Total	17	
1 7	а	i	Using a pH probe on a data logger OR pH meter	1	
			FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.11(0) (mol dm ⁻³), award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
		ii	$n(\text{NaOH}) = \frac{0.125 \times 22.0}{1000} = 2.75 \times 10^{-3} (\text{mol})$	2	
			concertration of CH_COOH = $\frac{2.75 \times 10^{-5} \times 1000}{25.0}$		ANNOTATE WITH TICKS AND CROSSES, etc
			= 0.11(0) (mol dm ⁻³)		ALLOW ECF: <i>n</i> (NaOH) × 1000/25.00
	b	i	Brilliant yellow AND Vertical section / rapid pH change matches the pH range / end point / colour change (of the indicator)	1	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point / colour change matches equivalence point IGNORE colour change matches end point (colour change is the same as end point)
		ii	Image: cool in the second system is a second system in the second system is a second system in the second system is a second system is	4	ALLOW direction of equilibrium shift if equilibrium shown: $HA \rightleftharpoons H^+ + A^-$ i.e. 'towards HA' is equivalent to 'to left' i.e. 'towards A^- is equivalent to 'to right'
					ALLOW yellow-red colour
			FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 2.33 award 4 marks $K_a = 10^{-3.40} = 3.98 \times 10^{-4} \pmod{dm^{-3}}$		
	с	i	Concentration of aspirin $=\frac{1.00\times10^{12}}{100}\times1000$	4	
			= 0.0556 (mol dm ⁻³)		

			[H ²] = √(K _* × (H4)] = √(3.98 × 10 ⁻⁴ × 0.0556) = 4.70 × 10 ⁻⁵ (m/ dm ⁻⁵)		
			pH = −log 4.70 × 10 ⁻³ = 2.33		ALLOW ECF
					ALLOW ECF only from [H ⁺] calculation using [H ⁺] = $\sqrt{(K_a \times [HA])}$
		ii	Salts are ionic AND attracted to polar H ₂ O	1	
		ii	COO [−] reacts with H ⁺ forming COOH	2	ALLOW equilibrium shifts to left
		i	Aspirin precipitates out	2	
			Total	15	
			$[H^+] = 10^{-pH} = 10^{-2.19} = 6.46 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$		
			$[CH_{3}CH(OH)COOH] = \frac{[H^{+}]^{2}}{K_{a}} = \frac{(6.46 \times 10^{-3})^{2}}{1.38 \times 10^{-4}}$		
			= 0.0302(mol dm ⁻³)		
			<i>n</i> (CH ₃ CH(OH)COOH) = <u>0.302 × 250</u> = 0.0755 mol 1000		
1 8	а		Mass of CH₃CH(OH)COOH = 0.0755 × 90 = 6.80 g	8	ALLOW 5 marks for 6.80 g through any
0			Dissolve 6.80 g of the solid in distilled water (less than 250 cm ³) in a beaker		calculation.
			(then) transfer the solution to a 250 cm ³ volumetric flask AND ensure that all solution is washed out of beaker (washings transferred to volumetric flask)		ALLOW ECF for incorrect calculation of mass. Mass used must be linked to calculation.
			(then) make solution up to 250 cm ³ with distilled water AND ensure thorough mixing by inverting the flask several times		
			$CH_3CH(OH)COO^- + CH_3CH_2CH_2COOH_2^+$		State symbols NOT required
	b		CH₃CH(OH)COOH AND CH₃CH(OH)COO ⁻ CH₃CH₂CH₂COOH AND CH₃CH₂CH₂COOH₂ ⁺ Both pairs identified	2	ALLOW labels 'acid 1', 'base 1' etc. ALLOW ECF for second mark
			$[H^{+}] = \frac{1 \times 10^{-14}}{0.185} = 5.405 \times 10^{-14}$		ALLOW 5.405405405 × 10^{-14} and correct rounding to 5.4 × 10^{-14}
	с	i	(Use of K_w)	2	ALLOW alternative approach using pOH: pOH = -log(0.185) = 0.73
			pH = −log(5.405 × 10 ⁻¹⁴) = 13.27		pH = 14 – 0.73 = 13.27 Correct answer scores BOTH marks
					ALLOW 13.267
			$n(A^{-}) = 9.25 \times 10^{-3} \text{ (mol)}$		ALLOW HA / acid and A ⁻ /salt throughout for butanoate and butanoic acid
		ii	$n(HA) = 0.0165 - 9.25 \times 10^{-3} = 7.25 \times 10^{-3} \text{ (mol)}$	4	
			$\begin{bmatrix} H^{+} \end{bmatrix} = K_{a} \times \underbrace{[HA]}_{[A^{-}]}$		ALLOW $pK_a = -\log K_a \text{ OR } -\log 1.5 \times$

5.1.3 Acids, Bases and Buffers

		pH = $-\log(1.5 \times 10^{-5} \times 0.058) = 4.93$ OR pH = $-\log(1.5 \times 10^{-5} \times \frac{1000 \times \frac{7.25 \times 10^{-3}}{125}}{1000 \times \frac{9.25 \times 10^{-3}}{125}}) = 4.93$ Final mark also via Henderson-Hasselbalch equation: pH = $pK_a - \log \frac{ HA }{ A^- } = 4.82 - (-0.11) = 4.93$ OR pH = $pK_a + \log \frac{ A^- }{ HA } = 4.82 + 0.11 = 4.93$		10 ⁻³ OR 4.82 ALLOW ECF from incorrect values of $n(A^{-})$ or $n(HA)$ ALLOW pH = $-\log(1.5 \times 10^{-5} \times \frac{7.25 \times 10^{-3}}{9.25 \times 10^{-3}}) =$ 4.93
		Total	16	
1 9		$H = \begin{pmatrix} 0 \\ 0 \\ 0 \\ H \end{pmatrix} \xrightarrow{I}_{H} H \xrightarrow{I}_{H} \begin{pmatrix} 0 \\ 0 \\ 0 \\ H \\ H \\ H \end{pmatrix} \xrightarrow{I}_{H} H \xrightarrow{I}_{H} \begin{pmatrix} 0 \\ 0 \\ 0 \\ H \\$	2	
		Total	2	
2 0	i	$K_{\rm a} = \frac{[[{\rm Fe}({\rm H}_{2}{\rm O})_{5}{\rm OH}]^{2+}({\rm aq})][{\rm H}^{+}({\rm aq})]}{[[{\rm Fe}({\rm H}_{2}{\rm O})_{6}]^{3+}({\rm aq})]}$	1	state symbols not required
	ii	$[H^{+}] = \sqrt{6.00 \times 10^{-3} \times 0.100}$ OR 0.0245 (mol dm ⁻³) pH = -log 0.0245 = 1.61	2	ALLOW ECF from calculated [H ⁺] provided that BOTH 6.0×10^{-3} AND 0.100 only have been used ALLOW calculation via quadratic equation \rightarrow pH 1.66
		Total	3	
2 1		$K_{\rm w}$ value from graph from 2.2 to 2.4 × 10 ⁻¹⁴ (mol ² dm ⁻⁶) Using 2.4 × 10 ⁻¹⁴ , [H ⁺] = $\sqrt{2.4 \times 10^{-14}}$ OR 1.55 × 10 ⁻⁷ pH = -log (1.55 × 10 ⁻⁷) = 6.81 (using $K_{\rm w}$ = 2.4 × 10 ⁻¹⁴)	3	Actual $K_w = 2.38 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ ALLOW ECF only if candidate uses a value between 2.0 and 2.6 × 10 ⁻¹⁴ (mol ² dm ⁻⁶), i.e. from the approximately correct region of the graph ALLOW 6.8 (1DP) up to calculator value ALLOW ECF only if candidate has generated a value of [H ⁺] by attempting to take a square root of a value between 2.0 and 3.0 × 10 ⁻¹⁴
		Total	3	

2 2	а	i	HNO ₃ is a strong acid AND HNO ₂ is a weak acid	1	ALLOW HNO ₃ completely dissociates AND HNO ₂ partially dissociates ALLOW HNO ₃ \rightarrow H ⁺ + NO ₃ ⁻ AND HNO ₂ \rightleftharpoons H ⁺ + NO ₂ ⁻ IGNORE HNO ₃ is a stronger acid ORA IGNORE HNO ₃ produces more H ⁺
		ii	pH = −log 0.0450 = 1.35 (2 DP required)	1	
		ii i	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 2.35, award all three calculation marks $K_a = 10^{-3.35}$ OR 4.47×10^{-4} (mol dm ⁻³) $[H^+] = \sqrt{(K_a \times [HNO_2])}$ OR $\sqrt{(K_a \times [HA])}$ OR $\sqrt{(K_a \times 0.0450)}$ OR 4.48×10^{-3} (mol dm ⁻³) pH = 2.35 (2 DP required)	3	ALLOW 2 SF to calculator value: 4.466835922 × 10^{-4} , correctly rounded IGNORE HNO ₃ in working Always ALLOW calculator value irrespective of working as number may have been kept in calculator. Note: pH = 2.35 is obtained from all three values above From no square root, pH = 4.70. Worth K _a mark only.
	b		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 0.810 (g) award 4 marks $[H^+] = 10^{-12.500} = 3.16 \times 10^{-13} \text{ (mol dm}^{-3})$ $[OH^-] = \frac{K_w}{[H^+]} = \frac{1.00 \times 10^{-14}}{3.16 \times 10^{-13}} = 0.0316 \text{ (mol dm}^{-3})$ $n(\text{RbOH}) = 0.0316 \times \frac{250}{1000} = 7.91 \times 10^{-3} \text{ (mol)}$ mass RbOH = 7.91 × 10 ⁻³ × 102.5 = 0.810 (g)	4	Always ALLOW calculator value irrespective of working as number may have been kept in calculator. ALLOW alternative approach using pOH: pOH = 14.000 - 12.500 = 1.500 $[OH^-] = 10^{-1.500} = 0.0316$ ALLOW ECF from [H ⁺] derived using <i>K</i> _w and [OH ⁻] BUT DO NOT ALLOW an acid pH. ALLOW 0.81 g, up to calculator value but take care as rounding could be from any stage. <i>Last 3 SF figure is zero and is treated as a</i> <i>'trailing zero' as specific number of SF has</i> <i>not been asked for.</i>
			Total	9	