Mark scheme - Acids, Bases and Buffers

				Responses to 20bi/ii often featured rows of figures and random sums without a single word about what the figures were or sums were set to calculate. Candidates should remember to provide written indications of what it is they're working out - presenting the calculation without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation.
If				

5.1.3 Acids, Bases and Buffers

				equation for the reaction occurring when H^{+} ions are added as well as the shift in equilibrium. The second bullet point gives a chemical equation for the reaction occurring when OH^{-}ions are added as well as the shift in equilibrium. The steps in the calculation are clearly shown and the ratio is clear.
		Total	6	
5		$\begin{aligned} \text { Initial rate } & =10^{-2} \times 2.4 \times 10^{-3} \mathrm{~s}^{-1} \\ & =2.4 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{gathered} 1 \\ \text { AO } \\ 2.2 \end{gathered}$	Examiner's Comments This part tested an understanding of pH as a logarithmic scale and the relationship between rates and order. This part discriminated extremely well. A pH of 3 meant that the H^{+}concentration would be 100 times less than at a pH of 1 . Being a first order reaction with respect to H^{+}, the initial rate is simply 100 times less than at a pH of 1: $2.4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. The higher-ability candidates identified the relationships and often wrote the correct answer on the answer line with no visible working (presumably doing the calculation in their head). Others used their well-learnt equations to calculate the same correct answer. Many candidates found the calculation difficult and $7.2 \times 10^{-3}\left(3 \times\left(2.4 \times 10^{-3}\right)\right)$ was a very common incorrect answer. If candidates had fully scrutinised this answer, they may have realised that a more dilute solution cannot produce a faster rate.
		Total	1	
6	a	$\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{HCO}_{3}^{-}$ OR $\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{CO}_{2} \sqrt{ }$	$\begin{gathered} 1 \\ \text { AO } \\ 1.2 \end{gathered}$	ALLOW $\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3}$ IGNORE state symbols ALLOW inclusion of Na^{+}as spectator ion, e.g. $2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}+2 \mathrm{Na}^{+}+\mathrm{CO}_{2}$ IGNORE $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{CO}_{2}$ lonic equation required IGNORE equation with H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$

				e.g. $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{OH}^{-}+\mathrm{CO}_{2}$ Question asks for reaction with $\mathrm{H}_{2} \mathrm{O}$ Examiner's Comments This equation presented problems for many candidates, despite the question asking for an equation between carbonate ions and water. An acceptable equation had to be ionic and needed to produce OH^{-}(for the alkaline solution) and either $\mathrm{HCO}_{3}{ }^{-}$or CO_{2}. Many candidates wrote an equation with H^{+} instead of $\mathrm{H}_{2} \mathrm{O}$, with lower ability candidates showing the carbonate ion with the wrong charge as $\mathrm{CO}_{3}{ }^{-}$. Many candidates wrote full equations despite the question asking for an ionic equation. Candidates do need to read the instructions in the question.
b	b	Acid $/ \mathrm{H}^{+} / \mathrm{HCl}$ reacts with OR protonates - benzoate / $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$ - carboxylate / salt (to form benzoic acid) \checkmark	$\begin{gathered} 1 \\ \text { AO } \\ 2.3 \end{gathered}$	ALLOW suitable equation, e.g. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid $/ \mathrm{H}^{+} / \mathrm{HCl}$ neutralises / reacts with/removes alkali / $\mathrm{OH}^{-} / \mathrm{CO}_{3}{ }^{2-} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ Examiner's Comments Candidates found this part extremely difficult. The question was aimed to stretch and challenge. Many candidates followed on directly from part (a), stating in simple terms that the alkaline solution needed to be neutralised to remove hydroxide ions. However, candidates were expected to recognise that the alkaline conditions would lead to benzoate ions rather than benzoic acid being present in the mixture. The mixture is acidified to protonate the benzoate. The hint in the question was about making the benzoic acid appearing when acid is added.
c	c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$	$\begin{gathered} 1 \\ \text { AO } \\ 2.6 \end{gathered}$	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ Examiner's Comments This part discriminated well with many

			candidates being able to write a correct equation using their knowledge of the oxidation of alcohols. Mistakes usually resulted in the balancing with either [O] instead of $2[\mathrm{O}]$ or $2 \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{H}_{2} \mathrm{O}$. Written equations always need to be checked for the atoms balancing.
d	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (\%) award 3 marks Answer depends on some intermediate roundings to 3SF	AO2. 8×1 AO2. 8×1 AO1. 2	
			Calculator $=0.03851851852$
			Calculator $=0.01303278689$
			Alternative method using mass
			2. Mass $=0.0385 \times 122.0=4.70 \mathrm{~g}$
			3. \% yield $=\frac{1.59}{4.70} \times 100=33.8 \%$
			Common errors $35.2 \% \rightarrow 2$ marks
			$\text { - From } \frac{4.00}{108}=0.0370$
			(no use of density)
			36.5 OR 36.6\% $\rightarrow 2$ marks
			$\text { - } \frac{4.00 / 1.04}{108}=\frac{3.846}{108}=0.0356$
			(\div density instead of \times density $)$
			Examiner's Comments
			Candidates are well practised with percentage yield calculations with about half obtaining the correct percentage yield of 33.8 or 33.9% to secure all 3 marks. Many were able to secure partial credit for incorrect answers, provided that the working was laid out clearly.

				described the purification of an organic liquid for their response, including use of a separating funnel, drying and distillation.
		Total	8	
7	i	3-hydroxybutanal \checkmark	1	ALLOW 3-hydroxybutan-1-al IGNORE lack of hyphens or addition of commas ALLOW 4-oxobutan-2-ol OR 1-oxobutan-3ol DO NOT ALLOW - 3-hydroxybutal - 3-hydroxylbutanal Examiner's Comments Most candidates made good attempts at the name, the difficulty being that hydroxyl group needed to be shown as a hydroxyprefix, rather than the suffix -ol. Common errors included 2-hydroxybutanal (counting the carbon chain from the wrong end) and 2- or 3-hydroxybutanoic acid (reading the aldehyde group as a carboxylic acid).
	ii	Addition \checkmark	1	IGNORE nucleophilic OR electrophilic OR radical DO NOT ALLOW addition-elimination, condensation, polymerisation Examiner's Comments This part was answered well with most choosing nucleophilic addition. Credit was given just for 'addition'.
		ALLOW any formula provided that number and type of atoms and charge are correct, e.g. For $\mathrm{CH}_{3} \mathrm{CHO}$, ALLOW $\mathrm{CH}_{3} \mathrm{COH}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, etc. Step 1: - Correct equation \checkmark One correct acid-base pair \checkmark - i.e. A1 and B1 OR A2 and B2	3	Throughout, IGNORE 'connectivity in any formula or structures shown. Examples in Answer column and in 6a(iv) guidance below Step 1: ALLOW H^{+}transfer from OH^{-}, i.e. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{+}+\mathrm{O}^{2-}$ \checkmark

	OR $\begin{gathered}\text { C } \\ \\ \\ \\ \\ \text { A }\end{gathered}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{OH}^{-} \rightleftharpoons-\mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}^{-}+\mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$		
		1 B2	B1	A2
	OR A2	A2 B1	B2	1

OR B1
A2
A2
B1

Step 2:
$\mathrm{CH}_{3} \mathrm{CHO}_{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{+}+\mathrm{O}^{2-}$
$\rightarrow \quad \mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}+\mathrm{OH}^{-} \checkmark$

For $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{+}$: ALLOW CH3 CHOH^{+},

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}$

Examiner's Comments

This novel question linked together acidbase equilibria with a multi-step process.
Many candidates completed an equation to generate acid-base pairs, which were then usually assigned correctly. The final equation was challenging but the highest ability candidates were able to combine together all the information with their earlier responses to arrive at the correct equation.
See Exemplar 15.
Exemplar 15

ALLOW correct structural OR displayed OR skeletal formulae
OR a combination of above as long as unambiguous

For connectivity,

ALLO	I	CH_{3-}	$\mathrm{CH}_{3} \mathrm{H}-$	OH	
\mathbf{w}	OH	CH_{3}			

(Connectivity not being assessed)

Examiner's Comments

This part was one of the most challenging on the paper.

Candidates needed to link the earlier information for combining two ethanal molecules to derive the product for combining two propanone molecules.
Despite the challenge, the highest ability

				candidates were able to come up with the correct structure.
		Total	6	
8	i	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-1}\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1	IGNORE state symbols Must be square brackets IGNORE expressions with HA or with $\left[\mathrm{H}^{+}\right]^{2}$ Examiner's Comments Almost universally known. Common errors were the use of $[\mathrm{HA}],\left[\mathrm{A}^{-}\right]$or $\left[\mathrm{H}^{+}\right]^{2}$.
	ii	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 4.76 award 3 marks $\begin{aligned} {\left[\mathrm{H}^{+}\right]=} & 10^{-\mathrm{pH}} \\ & =10^{-2.41}=3.89 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \\ K_{\mathrm{a}} & \\ & =\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\left(3.89 \times 10^{-3}\right)^{2}}{0.870} \\ & =1.74 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}{ }^{-3}\right) \checkmark \\ \mathbf{p K a} & \\ & =-\log K_{\mathrm{a}}=-\log 1.74 \times 10^{-5}=4.76 \checkmark \end{aligned}$	3	ALLOW use of HA and \mathbf{A}^{-} ALLOW 3 SF up to calculator value of: $3.89045145 \times 10^{-3}$ correctly rounded Ka $1.739725573 \times 10^{-3}$ NOTE: 1.74×10^{-5} is same from unrounded $\left[\mathrm{H}^{+}\right]$calculator value and $3 \mathrm{SF}\left[\mathrm{H}^{+}\right]$value 2 DP required Examiner's Comments This three-step calculation was successfully completed by almost all candidates. The common errors were to omit giving the final answer to 2 decimal places or to use $\left[\mathrm{H}^{+}\right]$rather than $\left[\mathrm{H}^{+}\right]^{2}$ in the calculation, leading to a $\mathrm{p} K_{\mathrm{a}}$ of 2.35 .
		$\begin{aligned} & \% \text { dissociation }=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \times 100 \\ & \quad=\frac{3.89 \times 10^{-3}}{0.870} \times 100=0.447(\%) \end{aligned}$	1	3 SF required Examiner's Comments This proved a more difficult calculation than expected, but higher ability candidates realised that $\left[\mathrm{H}^{+}\right]$(determined from the pH) divided by the given concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ was required. Answers had to be expressed to three significant figures in order to receive credit.
	b	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 95.9(\%) award 4 marks	2	

		$\begin{aligned} {\left[\mathrm{H}^{+}\right]=} & 10^{-\mathrm{pH}} \\ & =10^{-13.48}=3.31 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$ [${ }^{-1}{ }^{-}$] from K_{w} $=\frac{1.00 \times 10^{-14}}{3.31 \times 10^{-14}}=0.302\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}$ Mass of (NaOH) $\begin{aligned} & \quad=0.302 \times \frac{100}{1000} \times 40.0=1.21(\mathrm{~g}) \\ & \% \text { of } \mathrm{NaOH} \text { to } 3 \text { SF } \\ & =\frac{1.21}{1.26} \times 100=95.9(\%) \checkmark \end{aligned}$		ALLOW ECF throughout IGNORE rounding errors beyond $3^{\text {rd }}$ SF throughout ALLOW $3.3 \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW 0.30 ALLOW 0.303 if 3.3×10^{-14} used in the first marking point ALLOW pOH method:, $\begin{aligned} & \mathrm{pOH}=14-13.48=0.52 \\ & {\left[\mathrm{OH}^{-}\right]=10^{-0.52}=0.302\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$ ALLOW $\left[\mathrm{OH}^{-}\right] \times 0.1 \times 40$ Rounding $\left[\mathrm{OH}^{-}\right.$] to 0.3(0) gives 1.2/1.26 = 95.2\% Award 4 marks Rounding $\left[\mathrm{OH}^{-}\right.$] to 0.303 gives $1.212 / 1.26=$ 96.2\% Award 4 marks Examiner's Comments To help candidates, on this occasion early rounding was ignored and consequently most candidates scored full marks in this multi-step calculation. However, candidates should be advised not to round in the early stages of calculations such as this, as this introduces rounding errors into the final answer. Candidates should be encouraged to indicate what they are attempting to calculate in unstructured calculations such as this. The first step was frequently seen as $10^{-13.48}$ $=3.31 \ldots \times 10^{-14}$ which most examiners could take to be $\left[\mathrm{H}^{+}\right]$. However, it is clearer to write $\left[\mathrm{H}^{+}\right]=10^{-13.48}=3.31 \ldots \times 10^{-14} \mathrm{~mol}$ dm^{-3}. Even inclusion of units would help some candidates achieve partial credit as this might allow examiners to determine what a candidate is attempting to do.
		Total	9	
9		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=0.753$, award 3 marks	3	

				Only the very able were able to explain that the ratio of concentrations of acid and salt would remain constant and as K_{a} is constant, $\left[\mathrm{H}^{+}\right]$and therefore pH would remain constant.
		Total	12	
$\left\|\begin{array}{l} 1 \\ 0 \end{array}\right\|$	i	$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{3} S\right]}{\left.\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{H}\right]\right]}$ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: This part was very well answered. Candidates responded with either near molecular formulae, such as $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$, structural formulae or with skeletal formulae. Some candidates made careless errors such as omitting the negative charge or showing $\left[\mathrm{H}^{+}\right]^{2}$ as numerator rather than $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}^{-}\right]\left[\mathrm{H}^{+}\right]$.
	ii	Structure of thioester \checkmark Complete equation \checkmark	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C4H9SH ALLOW CH3 COOH^{2} Thioester functional group must be fully displayed, OR as a skeletal formula but allow $\mathrm{SC}_{4} \mathrm{H}_{9}$ in thioester Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of esterification to thiols and thioesters. Over half the candidates obtained a correct structure of the thioester. Most of these candidates constructed a balanced equation although some omitted the water product. Common errors included formation of a conventional ester and $\mathrm{H}_{2} \mathrm{~S}$, and retaining the O atom from the OH in the carboxyl group to form -COOS-. As with 4(b)(i), structural and skeletal formulae were used. Candidates are less likely to omit H atoms if the skeletal formula is used.
	ii		1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure

5.1.3 Acids, Bases and Buffers

		Total	5	
1	i	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}-\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]}$ ALL species MUST have square brackets State symbols not required TAKE CARE that ' H ' is different on top and bottom of expression	1	ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$ IGNORE state symbols, even if wrong IGNORE $\frac{\left[H^{+}\right]^{2}}{\left[C_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]}$ OR $\frac{\left[\mathrm{H}^{+}{ }^{2}[\mathrm{~A}]\right.}{[\mathrm{HA}]}$
	ii	$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(6.76 \times 10^{-5}\right)=4.17 \checkmark$	1	Answer required to two DP
		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=2.82$ award 4 marks $\begin{aligned} & n(\text { vitamin } C)=\frac{3 \times 0.500}{176} \\ & =8.52(2) \times 10^{-3}(\mathrm{~mol}) \checkmark \end{aligned}$ $[$ vitamin $C]=8.52 \times 10^{-3} \times \frac{1000}{250}$ $=0.0341\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]\right)$ OR $\sqrt{ }\left(6.76 \times 10^{-5} \times 0.0341\right)$ OR $1.52 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ $\mathrm{pH} \quad=-\log \left(1.52 \times 10^{-3}\right)=2.82 \checkmark$ Answer required to two DP	4	ALLOW ECF from incorrect n (vitamin C) ALLOW ECF from incorrect [vitamin C] must be derived from $\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]\right)$ ALLOW ECF from incorrect [H^{+}] but ONLY if derived from $\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]\right)$
	b	FIRST, CHECK THE ANSWER ON ANSWER LINE IF ratio $=0.708$ award 3 marks $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.02}=9.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\frac{\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right]}=\frac{K_{9}}{\left[\mathrm{H}^{+}\right]}=\frac{6.76 \times 10^{-5}}{9.55 \times 10^{-5}}$ $=\frac{0.708}{1}$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below \qquad ANNOTATIONS MUST BE USED ALLOW ALTERNATIVE using Henderson-Hasselbalch equation \qquad ALLOW 9.55×10^{-5} up to calculator value of $9.54992586 \times 10^{-5}$ correctly rounded ALLOW ECF from incorrect $\left[\mathrm{H}^{+}\right]$ ALLOW 0.71 (2 SF) up to calculator value correctly rounded

				muddled responses that made little sense and could not be credited.
		Endothermic AND K_{w} increases with temperature OR Endothermic AND dissociation increases with temperature OR Endothermic AND (dissociation) involves breaking bonds \checkmark	1	Endothermic and reason required for the mark ALLOW Endothermic AND increasing temperature shifts equilibrium / reaction to the right / favours forward reaction DO NOT ALLOW breaking hydrogen bonds OR intermolecular bonds / forces Examiner's Comments Candidates were expected to predict the type of energy change using the provided information. Credit was given for responses linking an endothermic change with the increase of K_{w} with temperature or breaking bonds during dissociation.
		OH^{-}concentration $\left[\mathrm{OH}^{-}\right]=\frac{9.311 \times 10^{-14}}{1.00 \times 10^{-7}}=9.311 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\downarrow}$ Explanation (dependent on 1st mark) $\left.9.311 \times 10^{-7}>1 .(00) \times 10^{-7} \mathrm{OR}^{2} \mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right] \mathrm{OR} \mathrm{OH}^{-}$in excess AND Alkaline \checkmark	2	$\mathrm{H}^{+} \mathrm{OR} \mathrm{OH}^{-}$concentration (neutral pH) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{ }\left(9.311 \times 10^{-14}\right)=3.05 \times 10^{-7}$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \checkmark$ Explanation (dependent on 1st mark) $\mathrm{pH}=-\log \left(3.05 \times 10^{-7}\right)=6.5 \rightarrow$ 6.515501837 (calc) AND Alkaline \checkmark Examiner's Comments Most candidates calculated a value for $\left[\mathrm{H}^{+}\right]$ using the K_{w} value at $60^{\circ} \mathrm{C}$. Many recognised that $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$giving an alkaline solution. An alternative and equally valid method seen was to calculate the pH of a neutral solution at $60^{\circ} \mathrm{C}$ as 6.52 and then to relate water at a pH of 7 as being alkaline. Many using this approach thought that water would be acidic rather than alkaline, presumable because $6.52<7.00$.
		$\mathrm{p} K_{\mathrm{w}}=13.03 \checkmark$	1	ONLY correct answer Examiner's Comments Despite the novel context, almost all candidates obtained the correct $\mathrm{p} K_{w}$ value of 13.03.
	i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 10.76, award 3 marks \qquad	3	fuLL ANNotations must be used

		Dilution 1 mark $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=[\mathrm{NaOH}(\mathrm{aq})]=\frac{0.0270}{5}=0.00540\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\circ}$ [H^{+}] 1 mark $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\frac{9.311 \times 10^{-14}}{0.00540}=1.72 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Calculator: $1.724259259 \times 10^{-11}$ pH 1 mark $\mathrm{pH}=-\log 1.72 \times 10^{-11}=10.76 \mathrm{~V}$ ALLOW pOH method for 2nd and 3rd mark: $\begin{aligned} & \mathrm{pOH}=-\log 0.00540=2.27 \quad \text { (calculator } 2.26760624) \\ & \mathrm{pH}=13.03-2.27=10.76 \checkmark \end{aligned}$		ALLOW dilution AFTER calculation of [$\left.\mathrm{H}^{+}(\mathrm{aq})\right]$ i.e. original $\left[\mathrm{H}^{+}\right]=\frac{9.311 \times 10^{-14}}{0.0270}=3.45 \times 10^{-12}(\mathrm{~m}$ After dilution, $\left[\mathrm{H}^{+}\right]=3.45 \times 10^{-12} \times 5=1.72$ $\times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\mathrm{pH}=-\log 1.72 \times 10^{-11}=10.76 \mathrm{~V}$ ALLOW ECF from incorrect [$\mathrm{H}^{+}(\mathrm{aq})$] provided that $\mathrm{pH}>7$ \qquad COMMON ERRORS (MUST be to 2 DP) $\mathrm{pH}=11.73$ At $25^{\circ} \mathrm{C}\left(1.00 \times 10^{-14}\right)$: 2 marks $\mathrm{pH}=-\log 1.85 \times 10^{-12}=11.73$ $\mathbf{p H}=\mathbf{1 1 . 4 6}$ No dilution at $60^{\circ} \mathrm{C}(9.311 \times$ 10-14) 2 marks $\mathrm{pH}=-\log \left(3.45 \times 10^{-12}\right)=11.46$ $\mathrm{pH}=12.43$ No dilution AND $25^{\circ} \mathrm{C}(1.00 \times$ 10^{-14}) 1 mark $\mathrm{pH}=-\log \left(3.70 \times 10^{-13}\right)=12.43$ $\mathbf{p H}=\mathbf{1 2 . 1 6 \times 5}$ instead of $\div 5$ at $60^{\circ} \mathrm{C}(9.311$ $\times 10^{-14}$) 2 marks $\mathrm{pH}=-\log \left(6.879 \times 10^{-13}\right)=12.16$ $\mathbf{p H}=\mathbf{1 3 . 1 3 \times 5}$ instead of $\div 5$ at $25^{\circ} \mathrm{C}(1.00$ $\times 10^{-14}$) 1 mark $\mathrm{pH}=-\log \left(7.407 \times 10^{-14}\right)=13.13$ NOTE: Attempts at dilution $\rightarrow 0.0270$ with error in powers of $10 \rightarrow 12.46$ from 0.00270 , etc may give 2 marks by ECF Examiner's Comments The majority of candidates correctly calculated the pH via K_{w} but many had problems in initially deriving the concentration of the diluted solution of NaOH . Some candidates did not consider the dilution at all; others produced long calculations of this simple dilution, obtaining an array of concentrations. Provided that this concentration was then converted to a pH by a correct method, credit could still be given for the second part of the problem. Answer: $\mathrm{pH}=10.76$
		Total	18	
	i		1	State symbols NOT required ALLOW CNH and HO^{-}(i.e. any order) ALLOW 1 and 2 labels the other way

5.1.3 Acids, Bases and Buffers

			took the square root of the Ka value, obtaining a pH of 2.43. Unfortunately, some candidates rounded a correct pH to 4.9, despite a two decimal place requirement being emphasised in the question. Answer: $\mathrm{pH}=4.87$
	Added ammonia $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ removes added NH_{3} / alkali / base $\mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NH}_{3} / \mathrm{OH}^{-} \rightarrow$ OR NH_{3} / alkali reacts with / accepts H^{+} OR $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightarrow$ $\mathrm{ORH}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$		ALLOW use of HA / weak acid / acid for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$; ALLOW use of $\mathrm{NH}_{4} \mathrm{OH}$ for NH_{3}
	Equibrium $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$OR Equilibrium \rightarrow right \checkmark	2	ALLOW A- for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria Examiner's Comments The role of buffers in controlling pH is a common recall question and most candidates had prepared their rehearsed answers. Although this question asked for the addition of ammonia as a specific base, all but the weakest candidates identified that this was a question about addition of a base. The commonest and best answers stated that NH_{3} accepts a proton to form $\mathrm{NH}_{4}{ }^{+}$(with many ionic equations seen). The correct equilibrium shift was usually included.
	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES \qquad ALLOW HA and A^{-}throughout Amount of Mg (1 mark) $\begin{aligned} & n(\mathrm{Mg})=\frac{6.075}{24.3}=0.25(0) \mathrm{mol} \checkmark \\ & \ldots \\ & \text { Moles } / \text { concentrations }(2 \text { marks) } \\ & \quad n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=1.00-(2 \times 0.25)=0.50(\mathrm{~mol}) \checkmark \\ & \quad n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.00+(2 \times 0.25)=1.50(\mathrm{~mol}) \checkmark \end{aligned}$ [H^{+}] and $\mathrm{pH} \quad(1$ mark) $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ OR $4.5 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=-\log 4.5 \times 10^{-6}=5.35 \quad 2 \mathrm{dp}$ required \checkmark	4	FULL ANNOTATIONS MUST BE USED \qquad \qquad For $n(M g), 1$ mark ALLOW ECF for ALL marks below from incorrect $n(\mathrm{Mg})$ ECF ONLY available from concentrations that have - subtracted 0.50 OR 0.25 from 1 for [$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$] - added 0.50 OR 0.25 to 1 for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right.$] i.e. For moles / concentration 1 mark (1 mark lost)

		NOTE: IF there is no prior working, ALLOW 4 MARKS for $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND $\mathrm{pH}=5.35$ IF the ONLY response is $\mathrm{pH}=5.35$, award 1 mark ONLY \qquad Award a maximum of 1 mark (for $\boldsymbol{n}(\mathrm{Mg})=\mathbf{0 . 2 5} \mathbf{~ m o l}$) for: pH value from K_{a} square root approach (weak acid pH) pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH) ALLOW alternative approach based on Henderson-Hasselbalch equation for final 1 mark $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{1.5}{0.5} \mathrm{OR} \mathrm{p} K_{\mathrm{a}}-\log \frac{0.5}{1.5}$ $\mathrm{pH}=4.87+0.48=5.35 \checkmark$ ALLOW ${ }_{-l o g} K_{a}$ for $\mathrm{p} K_{\mathrm{a}}$		1. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 2. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.50$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 3. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.50$ \qquad ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.25} \mathrm{pH}=-\log 8.1$ 2. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.25} \mathrm{pH}=-\log 5.4$ 3. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.50} \mathrm{pH}=-\log 6.75$ Examiner's Comments This buffer calculation was aimed as stretch and challenge and the majority of candidates struggled to derive the concentrations of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$. An easy mark for the amount of magnesium added was available for almost all candidates. The problem was then to derive the amount and concentration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ that would be obtained $0.500 \mathrm{~mol}^{-3}$. Many did not identify that Mg and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ react in a 1:2 molar ratio, subtracting 0.25 , instead of 0.50 , from the original concentration. Rarely did candidates realise that the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$ concentration would increase from the initial concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3}$. Others assumed that no $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$was present at the start. Consequently, candidates often used a variety of acid-base ratios in their buffer calculation. Instead of the correct ratio of $0.5 / 1.5$, it was very common to see $0.75 / 1.25,0.75 / 0.25$, and especially $0.5 / 1$, $0.75 / 1$ and $0.25 / 1.0$. The very best candidates tackled the problem with apparent ease but this was seen comparatively rarely in scripts of other candidates. Answer: $\mathrm{pH}=5.35$
		Total	14	
1	a	$\begin{gathered} \mathrm{CH}_{3} \mathrm{COOH}+\underset{\text { Bcid } 1}{+\mathrm{H}_{2} \mathrm{O}} \underset{\text { Base } 2}{\rightleftharpoons} \underset{\text { Acid } 2}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\text { Base } 1 \checkmark}{\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark} \end{gathered}$	2	IGNORE state symbols (even if incorrect)

				ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acidbase pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. $\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+} \\ & +\mathrm{OH}^{-} X \end{aligned}$ Base 2 Acid 1 Acid 2 Base $1 \checkmark$ NOTE For the 2nd marking point (acidbase pairs), this is the ONLY acceptable ECF i.e., NO ECF from impossible chemistry Examiner's Comments Most candidates showed an acid-base equilibrium involving proton transfer and then identified the acid-base pairs. The acidbase pairs were usually correctly identified but the proton transfer was sometimes shown the wrong way round. Common errors included omission of a positive charge on $\mathrm{H}_{3} \mathrm{O}^{+}$and an equilibrium involving OH^{-}ions rather than water. Neither approach could be credited.
b		Water dissociates / ionises OR $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$ OR $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \checkmark$	1	ALLOW $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$ IGNORE breaking for dissociation IGNORE water contains H^{+}and OH^{-} IGNORE $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$i.e. no equilibrium sign IGNORE $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$i.e. no equilibrium sign Examiner's Comments The key required feature was the dissociation of water but many instead discussed dissociation of the acid.
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=1.15 \times 10^{-11}$, award 2 marks \qquad	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. \qquad

		$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3.06}=8.71 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$ ALLOW answer to two or more significant figures 2SF: $1.1 \times 10^{-11} ; 4$ SF: 1.148×10^{-11}; calculator $1.148153621 \times 10^{-11}$		ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=14-3.06=10.94 \checkmark \\ & {\left[\mathrm{OH}^{-}\right]=10^{-10.94}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$ Examiner's Comments The majority of candidates correctly calculated the hydroxide ion concentration via K_{w}. Another less popular but successful approach was via pOH. Either approach could result in both marks. Weaker candidates were successful in calculating the hydrogen ion concentration but this was then often shown also as the hydroxide ion concentration in the final answer. Answer: $1.15 \times 10^{-11} \mathrm{~mol} \mathrm{dm}^{-3}$
c		$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CaCO}_{3} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} V$	1	IGNORE state symbols ALLOW \rightleftharpoons provided that reactants on LHS For $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ ALLOW ($\left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ BUT DO NOT ALLOW if either charge is missing or incorrect Examiner's Comments The equations seen were certainly better than in previous sessions, perhaps as candidates will have practised similar questions from past papers. lonic signs within the formula of calcium ethanoate were allowed but both were then needed. Common errors included an incorrect formula of calcium ethanoate with one ethanoate group only and an unbalanced ethanoic acid on the left-hand side of the equation.
	ii	solution contains $\mathrm{CH}_{3} \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$	1	ALLOW names: ethanoic acid for $\mathrm{CH}_{3} \mathrm{COOH}$ ethanoate for $\mathrm{CH}_{3} \mathrm{COO}^{-}$ ALLOW calcium ethanoate $\mathbf{O R}$ ($\left.\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$ for $\mathrm{CH}_{3} \mathrm{COO}^{-}$ IGNORE 'acid, salt, conjugate base; responses must identify the acid and

| | | answers. Well-prepared candidates were
 thus able to collect full or nearly full marks
 for this part. There was a significant minority
 of candidates who had obviously not learnt
 this part of the specification and, despite
 their best efforts to invent answers, there
 was rarely anything that the examiners
 could credit. This was a great pity because
 marks were effectively being thrown away.
 Candidates are recommended to construct
 their responses using the weak acid
 equilibrium equation only. Some candidates
 shown both the correct relevant equilibrium
 but also others, including for calcium
 ethanoate. Subsequent explanations in
 terms of equilibrium were then ambiguous
 as the examiner could not tell which
 equilibrium was being discussed. Some
 candidates thankfully did label and |
| :--- | :--- | :--- | :--- |
| reference multiple equilibria so that some | | |
| credit could be awarded. | | |

5.1.3 Acids, Bases and Buffers

			Total	17	
$\begin{aligned} & 1 \\ & 7 \end{aligned}$	a	i	Using a pH probe on a data logger OR pH meter	1	
		ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=\mathbf{0 . 1 1 (0)}\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$, award $\mathbf{2}$ marks nlacol $=\frac{0.125 \times 200}{1000}=2.75 \times 10^{3}(\mathrm{~mm})$ $=0.11(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF: $n(\mathrm{NaOH}) \times 1000 / 25.00$
	b	i	Brilliant yellow AND Vertical section / rapid pH change matches the pH range / end point / colour change (of the indicator)	1	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point / colour change matches equivalence point IGNORE colour change matches end point (colour change is the same as end point)
		ii	 Explanation: Acid / H^{+}reacts with A^{-}AND equilibrium (position) shifts towards HA (to give a red colour) Alkali / OH^{-}reacts with $\mathrm{HA} / \mathrm{H}^{+}$AND equilibrium (position) shifts towards A^{-}(to give a yellow colour) At end point, equal amounts of HA and A^{-} AND orange colour	4	ALLOW direction of equilibrium shift if equilibrium shown: $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ i.e. 'towards HA' is equivalent to 'to left' i.e. 'towards A^{-}' is equivalent to 'to right'
	c	i	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=2.33$ award 4 marks $K_{a}=10^{-3.40}=3.98 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Cmarationdawinin $=\frac{10 \times x 0^{2}}{10} \times 100$ $=0.0556\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	4	

5.1.3 Acids, Bases and Buffers

				ALLOW ECF ALLOW ECF only from $\left[\mathrm{H}^{+}\right]$calculation using $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)$
	ii	Salts are ionic AND attracted to polar $\mathrm{H}_{2} \mathrm{O}$	1	
	ii	COO^{-}reacts with H^{+}forming COOH Aspirin precipitates out	2	ALLOW equilibrium shifts to left
		Total	15	
1	a	$\left.\begin{array}{l} {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.19}=6.46 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ {\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{K_{\mathrm{a}}}=\frac{\left(6.46 \times 10^{-3}\right)^{2}}{1.38 \times 10^{-4}}} \\ =0.0302(\mathrm{~mol} \mathrm{dm} \\ -3 \end{array}\right) .$ Mass of $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}=0.0755 \times 90=6.80 \mathrm{~g}$ Dissolve 6.80 g of the solid in distilled water (less than 250 cm^{3}) in a beaker (then) transfer the solution to a $250 \mathrm{~cm}^{3}$ volumetric flask AND ensure that all solution is washed out of beaker (washings transferred to volumetric flask) (then) make solution up to $250 \mathrm{~cm}^{3}$ with distilled water AND ensure thorough mixing by inverting the flask several times	8	ALLOW 5 marks for 6.80 g through any calculation. ALLOW ECF for incorrect calculation of mass. Mass used must be linked to calculation.
	b	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}_{2}^{+}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}_{2}{ }^{+}$ Both pairs identified	2	State symbols NOT required ALLOW labels 'acid 1', 'base 1' etc. ALLOW ECF for second mark
	c i	$\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.185}=5.405 \times 10^{-14}$ (Use of K_{w}) $\mathrm{pH}=-\log \left(5.405 \times 10^{-14}\right)=13.27$	2	ALLOW $5.405405405 \times 10^{-14}$ and correct rounding to 5.4×10^{-14} ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=-\log (0.185)=0.73 \\ & \mathrm{pH}=14-0.73=13.27 \end{aligned}$ Correct answer scores BOTH marks ALLOW 13.267
	ii	$\begin{aligned} & n\left(\mathrm{~A}^{-}\right)=9.25 \times 10^{-3}(\mathrm{~mol}) \\ & n(\mathrm{HA})=0.0165-9.25 \times 10^{-3}=7.25 \times 10^{-3}(\mathrm{~mol}) \\ & {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}} \end{aligned}$	4	ALLOW HA / acid and $\mathrm{A}^{-} /$salt throughout for butanoate and butanoic acid ALLOW $\mathrm{p} K_{\mathrm{a}}=-\log K_{a} \mathbf{O R}-\log 1.5 \times$

		$\mathrm{pH}=-\log \left(1.5 \times 10^{-5} \times \frac{0.058}{0.074}\right)=4.93$ $\mathrm{OR} \mathrm{pH}=-\log \left(1.5 \times 10^{-5} \times \frac{1000 \times \frac{7.25 \times 10^{-3}}{125}}{1000 \times \frac{9.25 \times 10^{-3}}{125}}\right)=4.93$ Final mark also via Henderson-Hasselbalch equation: $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}=4.82-(-0.11)=4.93 \\ & \mathrm{OR} \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=4.82+0.11=4.93 \end{aligned}$		$10^{-3} \text { OR } 4.82$ ALLOW ECF from incorrect values of $n\left(\mathrm{~A}^{-}\right)$ or n (HA) ALLOW $\mathrm{pH}=-\log \left(1.5 \times 10^{-5} \times \frac{7.25 \times 10^{-3}}{9.25 \times 10^{-3}}\right)=$ 4.93
		Total	16	
9		1 mark for correct reactants AND products AND correct positioning of + and - charges on products 1 mark for two correct curly arrows AND $\mathrm{H}_{2} \mathrm{O}$ curly arrow starting from O lone pair	2	
		Total	2	
0	i	$K_{\mathrm{a}}=\frac{\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})\right]}$	1	state symbols not required
	ii	$\left[\mathrm{H}^{+}\right]=\sqrt{6.00 \times 10^{-3} \times 0.100}$ OR $0.0245\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\mathrm{pH}=-\log 0.0245=1.61$	2	ALLOW ECF from calculated [H^{+}] provided that вотн 6.0×10^{-3} AND 0.100 only have been used ALLOW calculation via quadratic equation $\rightarrow \mathrm{pH} 1.66$
		Total	3	
2 1		K_{w} value from graph from 2.2 to $2.4 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$ Using 2.4×10^{-14}, $\left[H^{+}\right]=\sqrt{2.4 \times 10^{-14}} \quad$ OR 1.55×10^{-7} $\mathrm{pH}=-\log \left(1.55 \times 10^{-7}\right)=6.81\left(\right.$ using $\left.K_{w}=2.4 \times 10^{-14}\right)$	3	Actual $K_{w}=2.38 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ ALLOW ECF only if candidate uses a value between 2.0 and $2.6 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$, i.e. from the approximately correct region of the graph ALLOW 6.8 (1DP) up to calculator value ALLOW ECF only if candidate has generated a value of $\left[\mathrm{H}^{+}\right]$by attempting to take a square root of a value between 2.0 and 3.0×10^{-14}
		Total	3	

2		HNO_{3} is a strong acid AND HNO_{2} is a weak acid	1	ALLOW HNO_{3} completely dissociates AND HNO_{2} partially dissociates ALLOW $\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$AND $\mathrm{HNO}_{2} \rightleftharpoons$ $\mathrm{H}^{+}+\mathrm{NO}_{2}^{-}$ IGNORE HNO_{3} is a stronger acid ORA IGNORE HNO_{3} produces more H^{+}
	ii	$\mathrm{pH}=-\log 0.0450=1.35$ (2 DP required)	1	
		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 2.35, award all three calculation marks $\begin{aligned} & K_{\mathrm{a}}=10^{-3.35} \text { OR } 4.47 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{HNO}_{2}\right]\right) \text { OR } \sqrt{ }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)} \\ & \quad \text { OR } \sqrt{ }\left(K_{\mathrm{a}} \times 0.0450\right) \\ & \\ & \text { OR } 4.48 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ $\mathrm{pH}=2.35$ (2 DP required)	3	ALLOW 2 SF to calculator value: $4.466835922 \times 10^{-4}$, correctly rounded IGNORE HNO_{3} in working Always ALLOW calculator value irrespective of working as number may have been kept in calculator. Note: $\mathrm{pH}=2.35$ is obtained from all three values above From no square root, $\mathrm{pH}=4.70$. Worth K_{a} mark only.
		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=0.810(\mathrm{~g})$ award 4 marks $\left[\mathrm{H}^{+}\right]=10^{-12.500}=3.16 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}=\frac{1.00 \times 10^{-14}}{3.16 \times 10^{-13}}=0.0316\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $n(\mathrm{RbOH})=0.0316 \times \frac{250}{1000}=7.91 \times 10^{-3}(\mathrm{~mol})$ mass $\mathrm{RbOH}=7.91 \times 10^{-3} \times 102.5=0.810(\mathrm{~g})$	4	Always ALLOW calculator value irrespective of working as number may have been kept in calculator. ALLOW alternative approach using pOH : $\mathrm{pOH}=14.000-12.500=1.500$ $\left[\mathrm{OH}^{-}\right]=10^{-1.500}=0.0316$ ALLOW ECF from $\left[\mathrm{H}^{+}\right]$derived using K_{w} and $\left[\mathrm{OH}^{-}\right]$ BUT DO NOT ALLOW an acid pH. ALLOW 0.81 g , up to calculator value but take care as rounding could be from any stage. Last 3 SF figure is zero and is treated as a 'trailing zero' as specific number of SF has not been asked for.
		Total	9	

